Skip to main content

Advertisement

Log in

Discretization-based algorithms for generalized semi-infinite and bilevel programs with coupling equality constraints

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Discretization-based algorithms are proposed for the global solution of mixed-integer nonlinear generalized semi-infinite (GSIP) and bilevel (BLP) programs with lower-level equality constraints coupling the lower and upper level. The algorithms are extensions, respectively, of the algorithm proposed by Mitsos and Tsoukalas (J Glob Optim 61(1):1–17, 2015. https://doi.org/10.1007/s10898-014-0146-6) and by Mitsos (J Glob Optim 47(4):557–582, 2010. https://doi.org/10.1007/s10898-009-9479-y). As their predecessors, the algorithms are based on bounding procedures, which achieve convergence through a successive discretization of the lower-level variable space. In order to cope with convergence issues introduced by coupling equality constraints, a subset of the lower-level variables is treated as dependent variables fixed by the equality constraints while the remaining lower-level variables are discretized. Proofs of finite termination with \(\varepsilon \)-optimality are provided under appropriate assumptions, the preeminent of which are the existence, uniqueness, and continuity of the solution to the equality constraints. The performance of the proposed algorithms is assessed based on numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-linear Parametric Optimization. Birkhäuser, Basel (1982). https://doi.org/10.1007/978-3-0348-6328-5

    Book  MATH  Google Scholar 

  2. Bard, J.F.: Practical Bilevel Optimization. Springer, Boston (1998). https://doi.org/10.1007/978-1-4757-2836-1

    Book  MATH  Google Scholar 

  3. Ben-Tal, A., Nemirovski, A.: Robust optimization—methodology and applications. Math. Program. 92(3), 453–480 (2002). https://doi.org/10.1007/s101070100286

    Article  MathSciNet  MATH  Google Scholar 

  4. Bhattacharjee, B., Schwer, D.A., Barton, P.I., Green, W.H.: Optimally-reduced kinetic models: reaction elimination in large-scale kinetic mechanisms. Combust. Flame 135(3), 191–208 (2003). https://doi.org/10.1016/s0010-2180(03)00159-7

    Article  Google Scholar 

  5. Bhattacharjee, B., Green, W.H., Barton, P.I.: Interval methods for semi-infinite programs. Comput. Optim. Appl. 30(1), 63–93 (2005a). https://doi.org/10.1007/s10589-005-4556-8

    Article  MathSciNet  MATH  Google Scholar 

  6. Bhattacharjee, B., Lemonidis, P., Green, W.H., Barton, P.I.: Global solution of semi-infinite programs. Math. Program. 103(2), 283–307 (2005b). https://doi.org/10.1007/s10107-005-0583-6

    Article  MathSciNet  MATH  Google Scholar 

  7. Blankenship, J.W., Falk, J.E.: Infinitely constrained optimization problems. J. Optim. Theory Appl. 19(2), 261–281 (1976). https://doi.org/10.1007/bf00934096

    Article  MathSciNet  MATH  Google Scholar 

  8. Bracken, J., McGill, J.T.: Mathematical programs with optimization problems in the constraints. Oper. Res. 21(1), 37–44 (1973). https://doi.org/10.1287/opre.21.1.37

    Article  MathSciNet  MATH  Google Scholar 

  9. Dempe, S.: Foundations of Bilevel Programming. Nonconvex Optimization and Its Applications. Springer, Boston (2002). https://doi.org/10.1007/b101970

    Book  MATH  Google Scholar 

  10. Dempe, S.: Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints. Optimization 52(3), 333–359 (2003). https://doi.org/10.1080/0233193031000149894

    Article  MathSciNet  MATH  Google Scholar 

  11. Djelassi, H., Mitsos, A.: A hybrid discretization algorithm with guaranteed feasibility for the global solution of semi-infinite programs. J. Glob. Optim. 68(2), 227–253 (2017). https://doi.org/10.1007/s10898-016-0476-7

    Article  MathSciNet  MATH  Google Scholar 

  12. Edmunds, T.A., Bard, J.F.: An algorithm for the mixed-integer nonlinear bilevel programming problem. Ann. Oper. Res. 34(1), 149–162 (1992). https://doi.org/10.1007/bf02098177

    Article  MathSciNet  MATH  Google Scholar 

  13. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: On the use of intersection cuts for bilevel optimization. Math. Program. (2017). https://doi.org/10.1007/s10107-017-1189-5

    Article  MATH  Google Scholar 

  14. Floudas, C.A., Stein, O.: The adaptive convexification algorithm: a feasible point method for semi-infinite programming. SIAM J. Optim. 18(4), 1187–1208 (2008). https://doi.org/10.1137/060657741

    Article  MathSciNet  MATH  Google Scholar 

  15. Guerra Vázquez, F., Rückmann, J.-J.: Extensions of the Kuhn–Tucker constraint qualification to generalized semi-infinite programming. SIAM J. Optim. 15(3), 926–937 (2005). https://doi.org/10.1137/s1052623403431500

    Article  MathSciNet  MATH  Google Scholar 

  16. Guerra Vázquez, F., Rückmann, J.-J., Stein, O., Still, G.: Generalized semi-infinite programming: a tutorial. J. Comput. Appl. Math. 217(2), 394–419 (2008). https://doi.org/10.1016/j.cam.2007.02.012

    Article  MathSciNet  MATH  Google Scholar 

  17. Hemmati, M., Smith, J.C.: A mixed-integer bilevel programming approach for a competitive prioritized set covering problem. Discrete Optim. 20, 105–134 (2016). https://doi.org/10.1016/j.disopt.2016.04.001

    Article  MathSciNet  MATH  Google Scholar 

  18. Hettich, R., Kortanek, K.O.: Semi-infinite programming: theory, methods, and applications. SIAM Rev. 35(3), 380–429 (1993). https://doi.org/10.1137/1035089

    Article  MathSciNet  MATH  Google Scholar 

  19. Jan, R.-H., Chern, M.-S.: Nonlinear integer bilevel programming. Eur. J. Oper. Res. 72(3), 574–587 (1994). https://doi.org/10.1016/0377-2217(94)90424-3

    Article  MATH  Google Scholar 

  20. Jongen, HTh, Rückmann, J.-J., Stein, O.: Generalized semi-infinite optimization: a first order optimality condition and examples. Math. Program. 83(1–3), 145–158 (1998). https://doi.org/10.1007/bf02680555

    Article  MathSciNet  MATH  Google Scholar 

  21. Kleniati, P.-M., Adjiman, C.S.: Branch-and-sandwich: a deterministic global optimization algorithm for optimistic bilevel programming problems. Part I: theoretical development. J. Glob. Optim. 60(3), 425–458 (2014). https://doi.org/10.1007/s10898-013-0121-7

    Article  MathSciNet  MATH  Google Scholar 

  22. Kleniati, P.-M., Adjiman, C.S.: Branch-and-sandwich: a deterministic global optimization algorithm for optimistic bilevel programming problems. Part II: convergence analysis and numerical results. J. Glob. Optim. 60(3), 459–481 (2014). https://doi.org/10.1007/s10898-013-0120-8

    Article  MathSciNet  MATH  Google Scholar 

  23. Kleniati, P.-M., Adjiman, C.S.: A generalization of the branch-and-sandwich algorithm: from continuous to mixed-integer nonlinear bilevel problems. Comput. Chem. Eng. 72, 373–386 (2015). https://doi.org/10.1016/j.compchemeng.2014.06.004

    Article  Google Scholar 

  24. Lemonidis, P.: Global optimization algorithms for semi-infinite and generalized semi-infinite programs. Ph.D. thesis, Massachusetts Institute of Technology, Boston, MA (2008)

  25. Liu, Z., Gong, Y.-H.: Semi-infinite quadratic optimisation method for the design of robust adaptive array processors. IEE Proc. F 137(3), 177–182 (1990)

    Google Scholar 

  26. Lo Bianco, C.G., Piazzi, A.: A hybrid algorithm for infinitely constrained optimization. Int. J. Syst. Sci. 32(1), 91–102 (2001). https://doi.org/10.1080/00207720121051

    Article  MathSciNet  MATH  Google Scholar 

  27. López, M.A.: Semi-infinite programming. Eur. J. Oper. Res. 180(2), 491–518 (2007). https://doi.org/10.1002/0471667196.ess3211

    Article  MathSciNet  MATH  Google Scholar 

  28. Mitsos, A.: Global solution of nonlinear mixed-integer bilevel programs. J. Glob. Optim. 47(4), 557–582 (2010). https://doi.org/10.1007/s10898-009-9479-y

    Article  MathSciNet  MATH  Google Scholar 

  29. Mitsos, A.: Global optimization of semi-infinite programs via restriction of the right-hand side. Optimization 60(10–11), 1291–1308 (2011). https://doi.org/10.1080/02331934.2010.527970

    Article  MathSciNet  MATH  Google Scholar 

  30. Mitsos, A., Tsoukalas, A.: Global optimization of generalized semi-infinite programs via restriction of the right hand side. J. Glob. Optim. 61(1), 1–17 (2015). https://doi.org/10.1007/s10898-014-0146-6

    Article  MathSciNet  MATH  Google Scholar 

  31. Mitsos, A., Lemonidis, P., Barton, P.I.: Global solution of bilevel programs with a nonconvex inner program. J. Glob. Optim. 42(4), 475–513 (2008a). https://doi.org/10.1007/s10898-007-9260-z

    Article  MathSciNet  MATH  Google Scholar 

  32. Mitsos, A., Lemonidis, P., Lee, C.K., Barton, P.I.: Relaxation-based bounds for semi-infinite programs. SIAM J. Optim. 19(1), 77–113 (2008b). https://doi.org/10.1137/060674685

    Article  MathSciNet  MATH  Google Scholar 

  33. Moore, J.T., Bard, J.F.: The mixed integer linear bilevel programming problem. Oper. Res. 38(5), 911–921 (1990). https://doi.org/10.1287/opre.38.5.911

    Article  MathSciNet  MATH  Google Scholar 

  34. Oluwole, O.O., Barton, P.I., Green, W.H.: Obtaining accurate solutions using reduced chemical kinetic models: a new model reduction method for models rigorously validated over ranges. Combust. Theor. Model. 11(1), 127–146 (2007). https://doi.org/10.1080/13647830600924601

    Article  MathSciNet  MATH  Google Scholar 

  35. Polak, E.: On the mathematical foundations of nondifferentiable optimization in engineering design. SIAM Rev. 29(1), 21–89 (1987). https://doi.org/10.1137/1029002

    Article  MathSciNet  Google Scholar 

  36. Rückmann, J.-J., Shapiro, A.: First-order optimality conditions in generalized semi-infinite programming. J. Optim. Theory Appl. 101(3), 677–691 (1999). https://doi.org/10.1023/a:1021746305759

    Article  MathSciNet  MATH  Google Scholar 

  37. Rückmann, J.-J., Shapiro, A.: Second-order optimality conditions in generalized semi-infinite programming. Set-Valued Anal. 9(1–2), 169–186 (2001). https://doi.org/10.1023/a:1011239607220

    Article  MathSciNet  MATH  Google Scholar 

  38. Rückmann, J.-J., Stein, O.: On linear and linearized generalized semi-infinite optimization problems. Ann. Oper. Res. 101(1–4), 191–208 (2001). https://doi.org/10.1023/a:1010972524021

    Article  MathSciNet  MATH  Google Scholar 

  39. Reemtsen, R., Görner, S.: Numerical methods for semi-infinite programming: a survey. In: Reemtsen, R., Rückmann, J.-J. (eds.) Semi-infinite Programming, pp. 195–275. Springer, Boston (1998). https://doi.org/10.1007/978-1-4757-2868-2_7

    Chapter  MATH  Google Scholar 

  40. Rosenthal, R.E.: GAMS—a user’s guide. Technical report, GAMS Development Corporation, Washington, DC (2017)

  41. Sahin, K.H., Ciric, A.R.: A dual temperature simulated annealing approach for solving bilevel programming problems. Comput. Chem. Eng. 23(1), 11–25 (1998). https://doi.org/10.1016/s0098-1354(98)00267-1

    Article  Google Scholar 

  42. Shimizu, K., Ishizuka, Y., Bard, J.F.: Nondifferentiable and Two-Level Mathematical Programming. Springer, Boston (1997). https://doi.org/10.1007/978-1-4615-6305-1

    Book  MATH  Google Scholar 

  43. Stein, O.: Bi-Level Strategies in Semi-Infinite Programming, volume 71 of Nonconvex Optimization and Its Applications. Springer, New York (2003). https://doi.org/10.1007/978-1-4419-9164-5

    Book  Google Scholar 

  44. Stein, O.: A semi-infinite approach to design centering. In: Dempe, S., Kalashnikov, V. (eds.) Optimization with Multivalued Mappings: Theory, Applications, and Algorithms, pp. 209–228. Springer, Boston (2006). https://doi.org/10.1007/0-387-34221-4_10

    Chapter  Google Scholar 

  45. Stein, O.: How to solve a semi-infinite optimization problem. Eur. J. Oper. Res. 223(2), 312–320 (2012). https://doi.org/10.1016/j.ejor.2012.06.009

    Article  MathSciNet  MATH  Google Scholar 

  46. Stein, O., Steuermann, P.: The adaptive convexification algorithm for semi-infinite programming with arbitrary index sets. Math. Program. 136(1), 183–207 (2012). https://doi.org/10.1007/s10107-012-0556-5

    Article  MathSciNet  MATH  Google Scholar 

  47. Stein, O., Still, G.: On generalized semi-infinite optimization and bilevel optimization. Eur. J. Oper. Res. 142(3), 444–462 (2002). https://doi.org/10.1016/s0377-2217(01)00307-1

    Article  MathSciNet  MATH  Google Scholar 

  48. Stein, O., Still, G.: Solving semi-infinite optimization problems with interior point techniques. SIAM J. Control Optim. 42(3), 769–788 (2003). https://doi.org/10.1137/s0363012901398393

    Article  MathSciNet  MATH  Google Scholar 

  49. Still, G.: Generalized semi-infinite programming: theory and methods. Eur. J. Oper. Res. 119(2), 301–313 (1999). https://doi.org/10.1016/s0377-2217(99)00132-0

    Article  MathSciNet  MATH  Google Scholar 

  50. Stuber, M.D., Barton, P.I.: Semi-infinite optimization with implicit functions. Ind. Eng. Chem. Res. 54(1), 307–317 (2015). https://doi.org/10.1021/ie5029123

    Article  Google Scholar 

  51. Stuber, M.D., Scott, J.K., Barton, P.I.: Convex and concave relaxations of implicit functions. Optim. Methods Softw. 30(3), 424–460 (2015). https://doi.org/10.1080/10556788.2014.924514

    Article  MathSciNet  MATH  Google Scholar 

  52. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005). https://doi.org/10.1007/s10107-005-0581-8

    Article  MathSciNet  MATH  Google Scholar 

  53. Thirwani, D., Arora, S.R.: An algorithm for the integer linear fractional bilevel programming problem. Optimization 39(1), 53–67 (1997). https://doi.org/10.1080/02331939708844271

    Article  MathSciNet  MATH  Google Scholar 

  54. Tsoukalas, A., Rustem, B.: A feasible point adaptation of the Blankenship and Falk algorithm for semi-infinite programming. Optim. Lett. 5(4), 705–716 (2011). https://doi.org/10.1007/s11590-010-0236-4

    Article  MathSciNet  MATH  Google Scholar 

  55. Tsoukalas, A., Rustem, B., Pistikopoulos, E.N.: A global optimization algorithm for generalized semi-infinite, continuous minimax with coupled constraints and bi-level problems. J. Glob. Optim. 44(2), 235–250 (2009). https://doi.org/10.1007/s10898-008-9321-y

    Article  MathSciNet  MATH  Google Scholar 

  56. Vicente, L.N., Calamai, P.H.: Bilevel and multilevel programming: a bibliography review. J. Glob. Optim. 5(3), 291–306 (1994). https://doi.org/10.1007/bf01096458

    Article  MathSciNet  MATH  Google Scholar 

  57. Weistroffer, V., Mitsos, V.: Relaxation-based bounds for GSIPs. In: Parametric Optimization and Related Topics X (paraoptX), Karlsruhe, Germany (2010)

  58. Yue, D., Gao, J., Zeng, B., You, F.: A projection-based reformulation and decomposition algorithm for global optimization of mixed integer bilevel linear programs. arXiv:1707.06196v2 (2018)

  59. Zeng, B., An, Y.: Solving bilevel mixed integer program by reformulations and decomposition. Optim. Online 1–34 (2014)

Download references

Acknowledgements

We gratefully acknowledge the financial support provided by Réseau de transport d’électricité (RTE, France) through the project “Bilevel Optimization for Worst-case Analysis of Power Grids” and by the Excellence Initiative of the German federal state governments through the Cluster of Excellence “Tailor Made Fuels from Biomass” (EXC 236). Moll Glass is grateful for her scholarship from the German Academic Scholarship Foundation (Studienstiftung des deutschen Volkes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Mitsos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 62 KB)

Appendices

Proofs

1.1 Proof of Lemma 6

Proof

Consider any fixed \((\bar{\varvec{x}}^u,\bar{\varvec{y}}^u) = \bar{\varvec{w}}^u \in \mathcal {W}^{u,s}(f^{u,*}+{\hat{\varepsilon }}^u,\varepsilon ^{ EQ})\) with \({\hat{\varepsilon }}^{ EQ}> \varepsilon ^{ EQ} > 0\). By Assumption 7, for any \(\varepsilon ^l_1 > 0\) there exists \((\bar{\varvec{w}}^l,\bar{\varvec{z}}^l) \in \mathcal {W}^l \times \mathcal {Z}^l\) such that

$$\begin{aligned} \begin{array}{llll} &{}\varvec{g}^{l,1}(\bar{\varvec{x}}^u,\bar{\varvec{y}}^u,\bar{\varvec{w}}^l,\bar{\varvec{z}}^l) &{}<&{} \varvec{0} \\ &{} \varvec{g}^{l,2}(\bar{\varvec{w}}^l) &{}\le &{} \varvec{0} \\ &{} ||\varvec{h}^l(\bar{\varvec{x}}^u,\bar{\varvec{y}}^u,\bar{\varvec{w}}^l,\bar{\varvec{z}}^l)||_\infty &{}<&{} \varepsilon ^{ EQ} \\ &{} \varvec{g}^{l,3}(\bar{\varvec{x}}^u,\bar{\varvec{y}}^u,\bar{\varvec{w}}^l,\bar{\varvec{z}}^l) &{}<&{} \varvec{0} \\ \end{array} \end{aligned}$$

and

$$\begin{aligned} f^{l}(\bar{\varvec{x}}^u,\bar{\varvec{y}}^u,\bar{\varvec{w}}^l,\bar{\varvec{z}}^l) \le f^{l,*}(\bar{\varvec{x}}^u,\bar{\varvec{y}}^u) + \varepsilon ^l_1. \end{aligned}$$
(9)

By continuity of \(f^l(\cdot ,\bar{\varvec{y}}^u,\bar{\varvec{w}}^l,\bar{\varvec{z}}^l)\) on \(\mathcal {X}^u\) (Assumption 2), for all \(\varepsilon ^l_2 > 0\), there exist \(\delta _1 > 0\) such that

$$\begin{aligned} f^l(\varvec{x}^u,\bar{\varvec{y}}^u,\bar{\varvec{w}}^l,\bar{\varvec{z}}^l)< f^l(\bar{\varvec{x}}^u,\bar{\varvec{y}}^u,\bar{\varvec{w}}^l,\bar{\varvec{z}}^l) + \varepsilon ^l_2, \; \forall \varvec{x}^u \in \mathcal {X}^u : ||\varvec{x}^u-\bar{\varvec{x}}^u|| < \delta _1. \end{aligned}$$
(10)

Combining (9) and (10) yields that for all \(\varepsilon ^l_1,\varepsilon ^l_2 > 0\) there exists \(\delta _1 > 0\) such that

$$\begin{aligned} f^l(\varvec{x}^u,\bar{\varvec{y}}^u,\bar{\varvec{w}}^l,\bar{\varvec{z}}^l)< f^{l,*}(\bar{\varvec{x}}^u,\bar{\varvec{y}}^u) + \varepsilon ^l_1 + \varepsilon ^l_2, \; \forall \varvec{x}^u \in \mathcal {X}^u : ||\varvec{x}^u-\bar{\varvec{x}}^u|| < \delta _1. \end{aligned}$$
(11)

Similarly, by continuity of \(\varvec{g}^{l,1}(\cdot ,\bar{\varvec{y}}^u,\bar{\varvec{w}}^l,\bar{\varvec{z}}^l)\), \(||\varvec{h}^l(\cdot ,\bar{\varvec{y}}^u,\bar{\varvec{w}}^l,\bar{\varvec{z}}^l)||_\infty \), and \(\varvec{g}^{l,3}(\cdot ,\bar{\varvec{y}}^u,\bar{\varvec{w}}^l,\bar{\varvec{z}}^l)\) on \(\mathcal {X}^u\) (Assumption 2), there exists \(\delta _2 > 0\) such that

$$\begin{aligned} \left. \begin{array}{llll} &{} \varvec{g}^{l,1}(\varvec{x}^u,\bar{\varvec{y}}^u,\bar{\varvec{w}}^l,\bar{\varvec{z}}^l) &{}\le \varvec{0} \\ &{} ||\varvec{h}^l(\varvec{x}^u,\bar{\varvec{y}}^u,\bar{\varvec{w}}^l,\bar{\varvec{z}}^l)||_\infty &{}\le \varepsilon ^{ EQ} \\ &{} \varvec{g}^{l,3}(\varvec{x}^u,\bar{\varvec{y}}^u,\bar{\varvec{w}}^l,\bar{\varvec{z}}^l) &{}\le \varvec{0} \\ \end{array}\right\} , \; \forall \varvec{x}^u \in \mathcal {X}^u : ||\varvec{x}^u-\bar{\varvec{x}}^u|| < \delta _2. \end{aligned}$$

Together with \(\varvec{g}^{l,2}(\bar{\varvec{w}}^l) \le \varvec{0}\), it follows that for all \(\varvec{x}^u \in \mathcal {X}^u : ||\varvec{x}^u-\bar{\varvec{x}}^u|| < \delta _2\), \((\varvec{x}^u,\bar{\varvec{y}}^u,\bar{\varvec{w}}^l,\bar{\varvec{z}}^l)\) is feasible in (BLP-LLP). Therefore and by definition of \(f^{l,*}\), it follows that there exists \(\delta _2 > 0\) such that

$$\begin{aligned} f^{l,*}(\varvec{x}^u,\bar{\varvec{y}}^u) \le f(\varvec{x}^u,\bar{\varvec{y}}^u,\bar{\varvec{w}}^l,\bar{\varvec{z}}^l), \; \forall \varvec{x}^u \in \mathcal {X}^u : ||\varvec{x}^u-\bar{\varvec{x}}^u|| < \delta _2. \end{aligned}$$
(12)

Combining (11) and (12) yields that for all \(\varepsilon ^l_1,\varepsilon ^l_2 > 0\) there exists \(\delta _1,\delta _2 > 0\) such that

$$\begin{aligned} f^{l,*}(\varvec{x}^u,\bar{\varvec{y}}^u)< f^{l,*}(\bar{\varvec{x}}^u,\bar{\varvec{y}}^u) + \varepsilon ^l_1 + \varepsilon ^l_2, \; \forall \varvec{x}^u \in \mathcal {X}^u : ||\varvec{x}^u-\bar{\varvec{x}}^u|| < \min \{\delta _1,\delta _2\}, \end{aligned}$$

which proves that \(f^{l,*}(\cdot ,\bar{\varvec{y}}^u)\) is upper semi-continuous at \(\bar{\varvec{x}}^u\) for all \(\bar{\varvec{w}}^u = (\bar{\varvec{x}}^u,\bar{\varvec{y}}^u) \in \mathcal {W}^{u,s}(f^{u,*}+{\hat{\varepsilon }}^u,\varepsilon ^{ EQ})\) with \({\hat{\varepsilon }}^{ EQ}> \varepsilon ^{ EQ} > 0\).

By Lemma 2.2.1 and Theorem 4.2.1(1) in Bank et al. [1] and Assumptions 1 and 2, \(f^{l,*}(\cdot ,\bar{\varvec{y}}^u)\) is lower semi-continuous at \(\bar{\varvec{x}}^u\) for all \((\bar{\varvec{x}}^u,\bar{\varvec{y}}^u) \in \mathcal {W}^{u,s}(\infty ,\varepsilon ^{ EQ}) \supseteq \mathcal {W}^{u,s}(f^{u,*}+{\hat{\varepsilon }}^u,\varepsilon ^{ EQ})\) with \({\hat{\varepsilon }}^{ EQ}> \varepsilon ^{ EQ} > 0\). \(\square \)

1.2 Proof of Lemma 7

Proof

Let for now \(f^{u,*}\) denote the infimum of (BLP) without asserting that the minimum is attained. By Definition 6 of the level sets, the infimum of (BLP) is equivalent to

$$\begin{aligned}&\begin{array}{lcll} &{}f^{u,*} = \underset{\varvec{w}^u,\varvec{w}^l,\varvec{z}^l}{\text {inf}}\, f^u(\varvec{w}^u,\varvec{w}^l,\varvec{z}^l)&{} \\ &{}\text {s.t.}\,f^{l}(\varvec{w}^u,\varvec{w}^l,\varvec{z}^l) &{}\le &{} f^{l,*}(\varvec{w}^u) \\ &{}(\varvec{w}^u,\varvec{w}^l,\varvec{z}^l) &{}\in &{} \mathcal {V}^s(f^{u,*},\varepsilon ^{ EQ}) \\ \end{array} \\&\qquad \varvec{w}^u \in \mathcal {W}^u, \quad \varvec{w}^l \in \mathcal {W}^l, \quad \varvec{z}^l \in \mathcal {Z}^l.\nonumber \end{aligned}$$
(13)

Only points \(\varvec{w}^u \in \mathcal {W}^{u,s}(f^{u,*},\varepsilon ^{ EQ}) \subseteq \mathcal {W}^{u,s}(f^{u,*} + {\hat{\varepsilon }}^u,{\hat{\varepsilon }}^{ EQ})\) are contained in the feasible set of this augmented problem. Therefore, \(f^{l,*}(\cdot ,\varvec{y}^u)\) is continuous on the feasible set of (13) (Lemma 6), which in turn is closed (and possibly empty) by the closedness of the level sets (Assumptions 1 and 2). In the case of an empty feasible set, (13) is infeasible; otherwise it attains its minimum by Weierstrass’ theorem. As a consequence, either (BLP) is infeasible or its minimum exists. \(\square \)

1.3 Proof of Theorem 2

Proof

(BLP-LBD) is a valid relaxation of (BLP) and is solved according to Definition 3 with \(\varepsilon ^{ MINLP}\) and \(\varepsilon ^{ EQ}\). By assumption it holds that \(\varepsilon ^{ MINLP} < {\hat{\varepsilon }}^u\) and \(\varepsilon ^{ EQ} < {\hat{\varepsilon }}^{ EQ}\). Therefore, it holds that \((\bar{\varvec{x}}^{u,{ LBD}},\bar{\varvec{y}}^{u,{ LBD}}) \in \mathcal {W}^{u,s}(f^{u,*} + {\hat{\varepsilon }}^u, \varepsilon ^{ EQ})\) for all points furnished by (BLP-LBD). If (BLP-LBD) is infeasible in any iteration of Algorithm 3, (BLP) is infeasible by virtue of (BLP-LBD) being a valid relaxation and the algorithm terminates.

Otherwise, we will show that for any \(\delta > 0\), after finitely many iterations of Algorithm 3, a point \((\hat{\varvec{x}}^{u,{ LBD}},\hat{\varvec{y}}^{u,{ LBD}},\hat{\varvec{w}}^{l,{ LBD}},\hat{\varvec{z}}^{l,{ LBD}})\) is furnished by (BLP-LBD) that satisfies \(\hat{\varvec{y}}^{u,{ LBD}} = \bar{\varvec{y}}^{u,{ LBD}}\) and \(\hat{\varvec{x}}^{u,{ LBD}} \in \mathcal {B}_\delta (\bar{\varvec{x}}^{u,{ LBD}})\), where \((\bar{\varvec{x}}^{u,{ LBD}},\bar{\varvec{y}}^{u,{ LBD}},\bar{\varvec{w}}^{l,{ LBD}},\bar{\varvec{z}}^{l,{ LBD}})\) is a solution previously furnished by (BLP-LBD). Furthermore, we will show that there exists \(\delta > 0\) such that such a solution \((\hat{\varvec{x}}^{u,{ LBD}},\hat{\varvec{y}}^{u,{ LBD}},\hat{\varvec{w}}^{l,{ LBD}},\hat{\varvec{z}}^{l,{ LBD}})\) is \(\tfrac{1}{2}\varepsilon ^u\)-optimal. Finally, we will show that Algorithm 3 terminates once such a solution is found.

By compactness of \(\mathcal {X}^u\) each open cover of \(\mathcal {X}^u\) has a finite subcover. In particular, this is true for an open cover composed of open neighborhoods \(\mathcal {B}_\delta (\varvec{x}^{u})\) around points \(\varvec{x}^{u} \in \mathcal {X}^u\) with \(\delta > 0\). Together with integrality of \(\mathcal {Y}^u\) it follows that for any \(\delta > 0\), (BLP-LBD) furnishes solutions \((\bar{\varvec{x}}^{u,{ LBD}},\bar{\varvec{y}}^{u,{ LBD}},\bar{\varvec{w}}^{l,{ LBD}},\bar{\varvec{z}}^{l,{ LBD}})\) and \((\hat{\varvec{x}}^{u,{ LBD}},\hat{\varvec{y}}^{u,{ LBD}},\hat{\varvec{w}}^{l,{ LBD}},\hat{\varvec{z}}^{l,{ LBD}})\) with \(\hat{\varvec{y}}^{u,{ LBD}} = \bar{\varvec{y}}^{u,{ LBD}}\) and \(\hat{\varvec{x}}^{u,{ LBD}} \in \mathcal {B}_\delta (\bar{\varvec{x}}^{u,{ LBD}})\) within finitely many iterations.

With \((\hat{\varvec{x}}^{u,{ LBD}},\bar{\varvec{y}}^{u,{ LBD}},\hat{\varvec{w}}^{l,{ LBD}},\hat{\varvec{z}}^{l,{ LBD}})\) being furnished by (BLP-LBD), it follows by construction that \((\hat{\varvec{x}}^{u,{ LBD}},\bar{\varvec{y}}^{u,{ LBD}}) \in \mathcal {W}^{u,s}(f^{u,*} + {\hat{\varepsilon }}^u, \varepsilon ^{ EQ})\) and \(\varvec{z}^{l,k} \in \mathcal {Z}^{l,*}(\hat{\varvec{x}}^{u,{ LBD}},\bar{\varvec{y}}^{u,{ LBD}},\varvec{w}^{l,k},\varepsilon ^{ EQ})\) for all \(k \in \mathcal {K}\). In particular, it holds that \(\varvec{z}^{l,K} \in \mathcal {Z}^{l,*}(\hat{\varvec{x}}^{u,{ LBD}},\bar{\varvec{y}}^{u,{ LBD}},\varvec{w}^{l,K},\varepsilon ^{ EQ})\) where \(K \in \mathcal {K}\) and \(\varvec{w}^{l,K}\) was generated for \((\bar{\varvec{x}}^{u,{ LBD}},\bar{\varvec{y}}^{u,{ LBD}})\). It follows by Lemma 9, \(\varepsilon ^{ EQ}\) sufficiently small, and \(\varepsilon ^{l,{ UBD}} > \varepsilon ^{l,{ AUX}}\) that there exists \(\delta > 0\) such that for \(\hat{\varvec{x}}^{u,{ LBD}} \in \mathcal {B}_\delta (\bar{\varvec{x}}^{u,{ LBD}})\) and \(\varvec{z}^{l,K} \in \mathcal {Z}^{l,*}(\hat{\varvec{x}}^{u,{ LBD}},\bar{\varvec{y}}^{u,{ LBD}},\varvec{w}^{l,K},\varepsilon ^{ EQ})\) it holds that

$$\begin{aligned} \begin{array}{llll} &{} f^l(\hat{\varvec{x}}^{u,{ LBD}},\bar{\varvec{y}}^{u,{ LBD}},\varvec{w}^{l,K},\varvec{z}^{l,K}) &{}\le &{} f^{l,*}(\hat{\varvec{x}}^{u,{ LBD}},\bar{\varvec{y}}^{u,{ LBD}}) + \varepsilon ^{l,{ UBD}} \\ &{} \varvec{g}^{l,2}(\varvec{w}^{l,K}) &{}\le &{} \varvec{0} \\ &{} \varvec{g}^{l,1}(\hat{\varvec{x}}^{u,{ LBD}},\bar{\varvec{y}}^{u,{ LBD}},\varvec{w}^{l,K},\varvec{z}^{l,K}) &{}\le &{} \varvec{0}. \\ \end{array} \end{aligned}$$

Consequently, the Kth logical constraint enforces

$$\begin{aligned} f^l(\hat{\varvec{x}}^{u,{ LBD}},\bar{\varvec{y}}^{u,{ LBD}},\hat{\varvec{w}}^{l,{ LBD}},\hat{\varvec{z}}^{l,{ LBD}}) \le f^l(\hat{\varvec{x}}^{u,{ LBD}},\bar{\varvec{y}}^{u,{ LBD}},\varvec{w}^{l,K},\varvec{z}^{l,K}), \end{aligned}$$

which in turn yields

$$\begin{aligned} f^l(\hat{\varvec{x}}^{u,{ LBD}},\bar{\varvec{y}}^{u,{ LBD}},\hat{\varvec{w}}^{l,{ LBD}},\hat{\varvec{z}}^{l,{ LBD}}) \le f^{l,*}(\hat{\varvec{x}}^{u,{ LBD}},\bar{\varvec{y}}^{u,{ LBD}}) + \varepsilon ^{l,{ UBD}}. \end{aligned}$$

It follows that \((\hat{\varvec{x}}^{u,{ LBD}},\bar{\varvec{y}}^{u,{ LBD}},\hat{\varvec{w}}^{l,{ LBD}},\hat{\varvec{z}}^{l,{ LBD}})\) satisfies all lower and upper-level constraints and that \((\hat{\varvec{w}}^{l,{ LBD}},\hat{\varvec{z}}^{l,{ LBD}})\) is \(\varepsilon ^{l,{ UBD}}\)-optimal in (BLP-LLP) for \((\hat{\varvec{x}}^{u,{ LBD}},\bar{\varvec{y}}^{u,{ LBD}})\). Furthermore, the lower bound generated from the solution \((\hat{\varvec{x}}^{u,{ LBD}},\bar{\varvec{y}}^{u,{ LBD}},\hat{\varvec{w}}^{l,{ LBD}},\hat{\varvec{z}}^{l,{ LBD}})\) satisfies

$$\begin{aligned} { LBD} = f^{u,{ LBD},-} \ge f^u(\hat{\varvec{x}}^{u,{ LBD}},\bar{\varvec{y}}^{u,{ LBD}},\hat{\varvec{w}}^{l,{ LBD}},\hat{\varvec{z}}^{l,{ LBD}}) - \varepsilon ^{ MINLP}. \end{aligned}$$

Finally, \((\hat{\varvec{x}}^{u,{ LBD}},\bar{\varvec{y}}^{u,{ LBD}},\hat{\varvec{w}}^{l,{ LBD}},\hat{\varvec{z}}^{l,{ LBD}})\) is feasible in (BLP-UBD) and the upper bound generated from its solution \((\hat{\varvec{w}}^{l,{ UBD}},\hat{\varvec{z}}^{l,{ UBD}})\) satisfies

$$\begin{aligned} { UBD}= & {} f^u(\hat{\varvec{x}}^{u,{ LBD}},\bar{\varvec{y}}^{u,{ LBD}},\hat{\varvec{w}}^{l,{ UBD}},\hat{\varvec{z}}^{l,{ UBD}})\\\le & {} f^u(\hat{\varvec{x}}^{u,{ LBD}},\bar{\varvec{y}}^{u,{ LBD}},\hat{\varvec{w}}^{l,{ LBD}},\hat{\varvec{z}}^{l,{ LBD}}) + \varepsilon ^{ MINLP}. \end{aligned}$$

With \(\varepsilon ^{ MINLP} < \tfrac{1}{2}\varepsilon ^u\), it holds that \({ UBD} - { LBD}< \varepsilon ^u\) and Algorithm 3 terminates. \(\square \)

GSIP test set

This section comprises the newly proposed equality-constrained GSIP test problems. The new test problems are obtained by replacing certain expressions in their original counterparts by new (dependent) variables and adding equality and selection constraints. The equivalence of the equality-constrained instances with their original counterparts can be verified by solving the equality constraints analytically for the dependent variables and in the case of multiple solutions applying the selection constraints. Substituting the so-obtained unique solution for the dependent variables in the test problems yields their original counterparts.

Test casejongen-4-2-eq The original version of the test case is proposed in [20, Example 4.2]. The equality-constrained version is given by

figure i

The solution of the equality constraint yields \(z^{l,*}_1(\varvec{w}^u,\varvec{w}^l) = (x^l_1)^2\).

Test casejongen-4-1-eq The original version of the test case is proposed in [20, Example 4.1]. The equality-constrained version is given by

figure j

The solution of the equality constraint yields \(z^{l,*}_1(\varvec{w}^u,\varvec{w}^l) = x^u_2 - (x^l_1)^3\).

Test caseruckmann-5-2-eq The original version of the test case is proposed in [37, Example 5.2]. The equality-constrained version is given by

figure k

The solution of the equality constraint yields \(z^{l,*}_1(\varvec{w}^u,\varvec{w}^l) = (x^l_1)^2 + (x^l_2)^2\).

Test casestill-303-eq The original version of the test case is proposed in [49, p. 303]. The equality-constrained version is given by

figure l

The solution of the equality constraint yields \(z^{l,*}_1(\varvec{w}^u,\varvec{w}^l) = (x^l_1+1)^2 + (x^u_1)^2\).

Test case ruckmann-3-1-eq The original version of the test case is proposed in [36, Example 3.1]. The equality-constrained version is given by

figure m

The solution of the equality constraints yields \(z^{l,*}_1(\varvec{w}^u,\varvec{w}^l) = (x^l_1)^2\) and \(z^{l,*}_2(\varvec{w}^u,\varvec{w}^l) = x^u_2 x^l_1\).

Test caseruckmann-5-1-eq The original version of the test case is proposed in [37, Example 5.1]. The equality-constrained version is given by

figure n

The solution of the equality constraint yields \(z^{l,*}_1(\varvec{w}^u,\varvec{w}^l) = (x^l_1+x^l_2)^2\).

Test casevazquez-3-3-eq The original version of the test case is proposed in [15, Example 3.3]. The equality-constrained version is given by

figure o

The solution of the equality constraint yields \(z^{l,*}_1(\varvec{w}^u,\varvec{w}^l) = (x^l_1)^5\).

Test casevazquez-2-2-eq The original version of the test case is proposed in [15, Example 2.2]. In [24, 30], the sign of the lower-level inequality constraint is inverted when compared to [15]. The same is done here for the sake of comparability of results. The equality-constrained version is given by

figure p

The solution of the equality constraint yields \(z^{l,*}_1(\varvec{w}^u,\varvec{w}^l) = x^u_1 - (x^l_1)^2\).

Test caselemonidis-9-eq The original version of the test case is proposed in [24, p. 155]. The equality-constrained version is given by

figure q

The solution of the equality constraint yields \(z^{l,*}_1(\varvec{w}^u,\varvec{w}^l) = (x^u_1)^2 x^l_1\).

Test caseruckmann-4-5-eq The original version of the test case is proposed in [38, Example 4.5]. The equality-constrained version is given by

figure r

The solution of the equality constraints yields \(z^{l,*}_1(\varvec{w}^u,\varvec{w}^l) = x^u_1 - x^l_1\) and \(z^{l,*}_2(\varvec{w}^u,\varvec{w}^l) = x^u_2 - x^l_1\).

Test caselemonidis-12-eq The original version of the test case is proposed in [24, p. 159]. The equality-constrained version is given by

figure s

The solution of the equality and selection constraints yields \(z^{l,*}_1(\varvec{w}^u,\varvec{w}^l) = (x^l_1)^2\).

Test caselemonidis-13-eq The original version of the test case is proposed in [24, p. 160]. The equality-constrained version is given by

figure t

The solution of the equality constraints yields \(z^{l,*}_1(\varvec{w}^u,\varvec{w}^l) = x^u_2 x^l_1\) and \(z^{l,*}_2(\varvec{w}^u,\varvec{w}^l) = (x^l_1)^2\).

Test caselemonidis-14-eq The original version of the test case is proposed in [24, p. 162]. The equality-constrained version is given by

figure u

The solution of the equality and selection constraints yields \(z^{l,*}_1(\varvec{w}^u,\varvec{w}^l) = (x^l_2)^2\).

BLP test set

This section comprises the newly proposed equality-constrained BLP test problems. The new test problems are obtained by replacing certain expressions in their original counterparts by new (dependent) variables and adding equality and selection constraints. The equivalence of the equality-constrained instances with their original counterparts can be verified by solving the equality constraints analytically for the dependent variables and in the case of multiple solutions applying the selection constraints. Substituting the so-obtained unique solution for the dependent variables in the test problems yields their original counterparts.

Test caseam-1-0-0-1-01-eq The original version of the test case is proposed in [28, p. 578]. The equality-constrained version is given by

figure v

The solution of the equality constraint yields \(z^{l,*}_1(\varvec{w}^u,\varvec{w}^l) = x^u_1 y^l_1\).

Test caseam-1-1-1-0-01-eq The original version of the test case is proposed in [28, p. 578]. The equality-constrained version is given by

figure w

The solution of the equality constraints yields \(z^{l,*}_1(\varvec{w}^u,\varvec{w}^l) = x^u_1 + x^l_1\) and \(z^{l,*}_2(\varvec{w}^u,\varvec{w}^l) = x^u_1 - x^l_1\).

Test caseam-1-1-1-1-01-eq The original version of the test case is proposed in [28, p. 578]. The equality-constrained version is given by

figure x

The solution of the equality constraint yields \(z^{l,*}_1(\varvec{w}^u,\varvec{w}^l) = x^u_1 (x^l_1)^2\).

Test caseam-1-1-1-1-02-eq The original version of the test case is proposed in [28, p. 579]. The equality-constrained version is given by

figure y

The solution of the equality and selection constraints yields \(z^{l,*}_1(\varvec{w}^u,\varvec{w}^l) = (x^l_1)^2\).

Test caseam-3-3-3-3-01-eq The original version of the test case is proposed in [28, p. 579]. The equality-constrained version is given by

figure z

The solution of the equality constraint yields \(z^{l,*}_1(\varvec{w}^u,\varvec{w}^l) = (x^l_1)^3 x^l_2 y^u_1\).

Test caseedmunds-bard-eq The original version of the test case is proposed in [12, p. 159]. The equality-constrained version is given by

figure aa

The solution of the equality constraint yields \(z^{l,*}_1(\varvec{w}^u,\varvec{w}^l) = (y^l_1)^2\).

Test casejan-chern-eq The original version of the test case is proposed in [19, p. 583]. The equality-constrained version is given by

figure ab

The solution of the equality constraint yields \(z^{l,*}_1(\varvec{w}^u,\varvec{w}^l) = y^l_1\).

Test casemoore-bard-eq The original version of the test case is proposed in [33, Example 2]. The equality-constrained version is given by

figure ac

The solution of the equality constraint yields \(z^{l,*}_1(\varvec{w}^u,\varvec{w}^l) = y^u_1 + 2 y^l_1\).

Test casesahin-ciric-eq The original version of the test case is proposed in [41, Example 4]. The equality-constrained version is given by

figure ad

The solution of the equality constraints yields \(z^{l,*}_1(\varvec{w}^u,\varvec{w}^l) = y^l_1 y^l_2\), \(z^{l,*}_2(\varvec{w}^u,\varvec{w}^l) = (1-y^l_1) y^l_2\), and \(z^{l,*}_3(\varvec{w}^u,\varvec{w}^l) = y^l_1 (1-y^l_2)\).

Test casethirwani-arora-eq The original version of the test case is proposed in [53, Example 1]. The equality-constrained version is given by

figure ae

The solution of the equality constraint yields \(z^{l,*}_1(\varvec{w}^u,\varvec{w}^l) = 6 y^l_1 + 4 y^u_1\).

Numerical results

See Tables 1, 2, and 3.

Table 1 Numerical results for Algorithm 1
Table 2 Numerical results for Algorithm 2
Table 3 Numerical results for Algorithm 3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djelassi, H., Glass, M. & Mitsos, A. Discretization-based algorithms for generalized semi-infinite and bilevel programs with coupling equality constraints. J Glob Optim 75, 341–392 (2019). https://doi.org/10.1007/s10898-019-00764-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00764-3

Keywords

Navigation