Consensus and balancing on the three-sphere

Abstract

We study consensus and anti-consensus on the 3-sphere as the global optimization problems. The corresponding gradient descent algorithm is a dynamical systems on \(S^3\), that is known in Physics as non-Abelian Kuramoto model. This observation opens a slightly different insight into some previous results and also enables us to prove some novel results concerning consensus and balancing over the complete graph. In this way we fill some gaps in the existing theory. In particular, we prove that the anti-consensus algorithm over the complete graph on \(S^3\) converges towards a balanced configuration if a certain mild condition on initial positions of agents is satisfied. The form of this condition indicates an unexpected relation with some important constructions from Complex Analysis.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Caponigro, M., Lai, A.C., Piccoli, B.: A nonlinear model of opinion formation on the sphere. Discrete Contin. Dyn. Syst. A 35(9), 4241–4268 (2015)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Chaturvedi, N.A., Sanyal, A.K., McClamroch, N.H.: Rigid-body attitude control. IEEE Control Syst. 31(3), 30–51 (2011)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Douady, A., Earle, C.J.: Conformally natural extension of homeomorphisms of the circle. Acta Math. 157(1), 23–48 (1986)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Hartley, R., Trumpf, J., Dai, Y., Li, H.: Rotation averaging. Int. J. Comput. Vis. 103(3), 267–305 (2013)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Jaćimović, V., Crnkić, A.: Low-dimensional dynamics in non-Abelian Kuramoto model on the 3-sphere. Chaos Interdiscip. J. Nonlinear Sci. 28(8), 083105 (2018)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Kato, S., McCullagh, P.: Conformal mapping for multivariate Cauchy families (2015). arXiv preprint arXiv:1510.07679

  7. 7.

    Kuramoto, Y.: Self-entrainment of a population of coupled nonlinear oscillators. In: Proceedings of International Symposium on Mathematical Problems in Theoretical Physics, pp. 420–422 (1975)

  8. 8.

    Lohe, M.A.: Non-Abelian Kuramoto models and synchronization. J. Phys. A Math. Theor. 42(39), 395101 (2009)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Lohe, M.A.: Quantum synchronization over quantum networks. J. Phys. A Math. Theor. 43(46), 465301 (2010)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Markdahl, J., Gonçalves, J.: Global converegence properties of a consensus protocol on the \(n\)-sphere. In: Proceedings of 55th IEEE Conference Decision and Control, pp. 3487–3492 (2016)

  11. 11.

    Markdahl, J., Thunberg, J., Gonçalves, J.: Almost global consensus on the \(n\)-sphere. IEEE Trans. Autom. Control 63(6), 1664–1675 (2018)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Marvel, S.A., Mirollo, R.E., Strogatz, S.H.: Identical phase oscillators with global sinusoidal coupling evolve by Möbius group action. Chaos Interdiscip. J. Nonlinear Sci. 19(4), 043104 (2009)

    Article  Google Scholar 

  13. 13.

    Nedic, A., Ozdaglar, A., Parrilo, P.A.: Constrained consensus and optimization in multi-agent networks. IEEE Trans. Autom. Control 55(4), 922–938 (2010)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)

    Article  Google Scholar 

  15. 15.

    Olfati-Saber, R.: Swarms on sphere: a programmable swarm with synchronous behaviors like oscillator networks. In: Proceedings of 45th IEEE Conference Decision and Control, pp. 5060–5066 (2006)

  16. 16.

    Paley, D.A.: Stabilization of collective motion on a sphere. Automatica 45(1), 212–216 (2009)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  18. 18.

    Sarlette, A.: Geometry and Symmetries in Coordination Control. Université de Liège, Liège (2009)

    Google Scholar 

  19. 19.

    Sarlette, A., Sepulchre, R.: Consensus optimization on manifolds. SIAM J. Control Optim. 48(1), 56–76 (2009)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Sarlette, A., Sepulchre, R., Leonard, N.E.: Autonomous rigid body attitude synchronization. Automatica 45(2), 572–577 (2009)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Sarlette, A., Sepulchre, R.: Synchronization on the circle (2009). arXiv preprint arXiv:0901.2408

  22. 22.

    Sepulchre, R.: Consensus on nonlinear spaces. Ann. Rev. Control 35(1), 56–64 (2011)

    Article  Google Scholar 

  23. 23.

    Sepulchre, R., Paley, D.A., Leonard, N.E.: Stabilization of planar collective motion with limited communication. IEEE Trans. Autom. Control 53(3), 706–719 (2008)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank anonymous referees for their valuable comments and suggestions. The second author acknowledges partial support of the Ministry of Science of Montenegro and the COST action CA16228 “European Network for Game Theory”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aladin Crnkić.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 22966 KB)

Supplementary material 2 (mp4 6143 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Crnkić, A., Jaćimović, V. Consensus and balancing on the three-sphere. J Glob Optim 76, 575–586 (2020). https://doi.org/10.1007/s10898-018-0723-1

Download citation

Keywords

  • Consensus
  • Balancing
  • 3-sphere
  • Synchronization
  • Non-Abelian Kuramoto models