Journal of Global Optimization

, Volume 73, Issue 3, pp 567–581 | Cite as

A topological convergence on power sets well-suited for set optimization

  • Michel H. GeoffroyEmail author


In this paper, we supply the power set \({\mathcal {P}}(Z)\) of a partially ordered normed space Z with a transitive and irreflexive binary relation which allows us to introduce a notion of open intervals on \({\mathcal {P}}(Z)\) from which we construct a topology on the set of lower bounded subsets of Z. From this topology, we derive a concept of set convergence that is compatible with the strict ordering on \({\mathcal {P}}(Z)\) and, taking advantage of its properties, we prove several stability results for minimal sets and minimal solutions to set-valued optimization problems.


Set-valued optimization Set approach Strict ordering Set convergence 

Mathematics Subject Classification

49J53 65K10 54A20 



The author would like to thank the anonymous referee for his/her careful reading of the manuscript and for providing valuable and accurate comments.


  1. 1.
    Bao, T.Q., Mordukhovich, B.S.: Relative Pareto minimizers for multiobjective problems: existence and optimality conditions. Math. Program. Ser. A 122(2), 301–347 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Braides, A.: A handbook of \(\Gamma \)-convergence. In: Chipot, M., Quittner, P. (eds.) Handbook of Differential Equations. Stationary Partial Differential Equations, vol. 3, pp. 101–213. Elsevier, Amsterdam (2006)CrossRefGoogle Scholar
  3. 3.
    De Giorgi, E., Franzoni, T.: Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58(6), 842–850 (1975)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Geoffroy, M.H., Marcelin, Y., Nedelcheva, D.: Convergence of relaxed minimizers in set optimization. Optim. Lett. 11(8), 1677–1690 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hernández, E.: A survey of set optimization problems with set solutions. In: Hamel, A., Heyde, F., Löhne, A., Rudloff, B., Schrage, C. (eds.) Set Optimization and Applications - The State of the Art. Springer Proceedings in Mathematics & Statistics, vol. 151. Springer, Berlin, Heidelberg (2015)CrossRefGoogle Scholar
  6. 6.
    Hamel, A.H.: Variational principles on metric and uniform spaces. Habilitation thesis, Martin-Luther-Universität Halle-Wittenberg (2005)Google Scholar
  7. 7.
    Hamel, A.H., Heyde, F., Löhne, A., Rudloff, B., Schrage, C. (eds.): Set optimization—a rather short introduction. In: Set Optimization and Applications - The State of the Art. Springer Proceedings in Mathematics & Statistics, vol. 151. Springer, Berlin, Heidelberg (2015)Google Scholar
  8. 8.
    Jahn, J.: Vector Optimization. Theory, Applications, and Extensions, 2nd edn. Springer, Berlin (2011)zbMATHGoogle Scholar
  9. 9.
    Khan, A.A., Tammer, C., Zălinescu, C.: Set-valued Optimization. An Introduction with Applications. Vector Optimization. Springer, Heidelberg (2015)zbMATHGoogle Scholar
  10. 10.
    Kuroiwa, D., Tanaka, T., Ha, T.X.D.: On cone convexity of set-valued maps. Nonlinear Anal. 30(3), 1487–1496 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kuroiwa, D.: The natural criteria in set-valued optimization. In: Research on Nonlinear Analysis and Convex Analysis (Japanese) (Kyoto, 1997). Sūrikaisekikenkyūsho Kōkyūroku No. 1031, pp. 85–90 (1998)Google Scholar
  12. 12.
    Kuroiwa, D.: On set-valued optimization. Nonlinear Anal. 47(2), 1395–1400 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Löhne, A.: Vector Optimization with Infimum and Supremum. Vector Optimization, p. 206. Springer, Heidelberg (2011)CrossRefzbMATHGoogle Scholar
  14. 14.
    Loridan, P.: \(\epsilon \)-solutions in vector minimization problems. J. Optim. Theory Appl. 43(2), 265–276 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Luc, D.T.: Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer, New York (1989)Google Scholar
  16. 16.
    Nishnianidze, Z.G.: Fixed points of monotone multivalued operators. Soobshch. Akad. Nauk Gruzin. SSR 114(3), 489–491 (1984)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Peressini, A.L.: Ordered Topological Vector Spaces. Harper & Row Publishers, New York, London (1967)zbMATHGoogle Scholar
  18. 18.
    Rockafellar, R.T., Wets, R.: Variational Analysis, vol. 317. Springer, Berlin (1998)CrossRefzbMATHGoogle Scholar
  19. 19.
    Young, R.C.: The algebra of many-valued quantities. Math. Ann. 104(1), 260–290 (1931)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LAMIA, Department of MathematicsUniversité des AntillesPointe-à-PitreFrance

Personalised recommendations