Skip to main content
Log in

On solving generalized convex MINLP problems using supporting hyperplane techniques

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Solution methods for convex mixed integer nonlinear programming (MINLP) problems have, usually, proven convergence properties if the functions involved are differentiable and convex. For other classes of convex MINLP problems fewer results have been given. Classical differential calculus can, though, be generalized to more general classes of functions than differentiable, via subdifferentials and subgradients. In addition, more general than convex functions can be included in a convex problem if the functions involved are defined from convex level sets, instead of being defined as convex functions only. The notion generalized convex, used in the heading of this paper, refers to such additional properties. The generalization for the differentiability is made by using subgradients of Clarke’s subdifferential. Thus, all the functions in the problem are assumed to be locally Lipschitz continuous. The generalization of the functions is done by considering quasiconvex functions. Thus, instead of differentiable convex functions, nondifferentiable \(f^{\circ }\)-quasiconvex functions can be included in the actual problem formulation and a supporting hyperplane approach is given for the solution of the considered MINLP problem. Convergence to a global minimum is proved for the algorithm, when minimizing an \(f^{\circ }\)-pseudoconvex function, subject to \(f^{\circ }\)-pseudoconvex constraints. With some additional conditions, the proof is also valid for \(f^{\circ }\)-quasiconvex functions, which sums up the properties of the method, treated in the paper. The main contribution in this paper is the generalization of the Extended Supporting Hyperplane method in Eronen et al. (J Glob Optim 69(2):443–459, 2017) to also solve problems with \(f^{\circ }\)-pseudoconvex objective function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Androulakis, I., Maranas, C., Floudas, C.A.: \(\alpha \)BB: A global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7, 337–363 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bagirov, A., Mäkelä, M.M., Karmitsa, N.: Introduction to Nonsmooth Optimization: Theory Practice and Software. Springer International Publishing, Cham, Heidelberg (2014)

    Book  MATH  Google Scholar 

  3. Bonami, P., Kilinc, M., Linderoth, J.: Algorithms and software for convex mixed-integer nonlinear programs. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Programming, The IMA Volumes in Mathematics and Its Applications, pp. 1–39. Springer, New York (2012)

    Google Scholar 

  4. Bussieck, M.R., Vigerske, S.: MINLP solver software. In: Wiley Encyclopedia of Operations Research and Management Science. Wiley (2011). https://doi.org/10.1002/9780470400531.eorms0527

  5. Cambini, A., Martein, L.: Generalized convexity and optimization—theory and applications. In: Lecture Notes in Economics and Mathematical Systems. Springer, Berlin (2009)

  6. Castillo, I., Westerlund, J., Emet, S., Westerlund, T.: Optimization of block layout design problems with unequal areas: a comparison of MILP and MINLP optimization methods. Comput. Chem. Eng. 30, 54–69 (2005)

    Article  Google Scholar 

  7. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  8. de Oliveira, W.: Regularized optimization methods for convex MINLP problems. TOP 24, 665–692 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36, 307–339 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eronen, V.-P., Mäkelä, M.M., Westerlund, T.: On the generalization of ECP and OA methods to nonsmooth MINLP problems. Optimization 63(7), 1057–1073 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eronen, V.-P., Mäkelä, M.M., Westerlund, T.: Extended cutting plane method for a class of nonsmooth nonconvex MINLP problems. Optimization 64(3), 641–661 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Eronen, V.-P., Kronqvist, J., Westerlund, T., Mäkelä, M.M., Karmitsa, N.: Method for solving generalized convex nonsmooth mixed-integer nonlinear programming problems. J. Glob. Optim. 69(2), 443–459 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approximation. Math. Program. 66, 327–349 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fletcher, R., Leyffer, S.: Numerical experience with lower bounds for MIQP branch-and-bound. SIAM J. Optim. 8, 604–616 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Geoffrion, A.M.: Generalized benders decomposition. J. Optim. Theory Appl. 10, 237–260 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grossmann, I.E.: Review of nonlinear mixed-integer and disjunctive programming techniques. Optim. Eng. 3, 227–252 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jain, V., Grossmann, I.: Cyclic scheduling of continuous parallel-process units with decaying performance. AIChE J. 44, 1623–1636 (1999)

    Google Scholar 

  18. Kelley, J.E.: The cutting plane method for solving convex programs. J. SIAM 8, 703–712 (1960)

    MathSciNet  MATH  Google Scholar 

  19. Kronqvist, J., Lundell, A., Westerlund, T.: The extended supporting hyperplane algorithm for convex mixed-integer nonlinear programming. J. Glob. Optim. 64, 249–272 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lee, J., Leyffer, S.: Mixed Integer Nonlinear Programming. Springer, New York (2012)

    Book  MATH  Google Scholar 

  21. Leyffer, S.: Integrating SQP and branch-and-bound for mixed integer nonlinear programming. Comput. Optim. Appl. 18, 295–309 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lundell, A., Skjäl, A., Westerlund, T.: A reformulation framework for global optimization. J. Glob. Optim. 57, 115–141 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Meyer, C.A., Floudas, C.A.: Convex underestimation of twice continuously differential functions by piecewise quadratic perturbations: spline \(\alpha \)BB underestimators. J. Glob. Optim. 32, 221–258 (2005)

    Article  MATH  Google Scholar 

  24. Mäkelä, M.M., Neittaanmäki, P.: Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control. World Scientific Publishing Co., Singapore (1992)

    Book  MATH  Google Scholar 

  25. Nestorov, Y., Nemirowskii, A.: Interior-point polynomial algorithms in convex programming. In: SIAM Studies in Applied Mathematics, vol. 13. Philadelphia (1994)

  26. Pörn, R.: Mixed-Integer Non-Linear Programming: Convexification Techniques and Algorithm Development. Ph.D. Thesis, Åbo Akademi University (2000)

  27. Quesada, I., Grossmann, I.E.: An LP/NLP based branch-and-bound algorithm for convex MINLP optimization problems. Comput. Chem. Eng. 16, 937–947 (1999)

    Article  Google Scholar 

  28. Roberts, A.W., Varberg, D.E.: Convex Functions. Academic Press, New York, London (1973)

    MATH  Google Scholar 

  29. Rockafellar, R.T.: Convex Analysis. Princeton Landmarks in Mathematics and Physics. Princeton University Press, Princeton (1997)

    Google Scholar 

  30. Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Glob. Optim. 8, 107–138 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Veinott Jr., A.F.: The supporting hyperplane method for unimodal programming. Oper. Res. 15(1), 147–152 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  32. Westerlund, T., Skrifvars, H., Harjunkoski, I., Pörn, R.: An extended cutting plane method for solving a class of non-convex MINLP problems. Comput. Chem. Eng. 22, 357–365 (1998)

    Article  MATH  Google Scholar 

  33. Westerlund, T., Pörn, R.: Solving pseudo-convex mixed integer optimization problems by cutting plane techniques. Optim. Eng. 3, 253–280 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Westerlund, T., Pettersson, F.: An extended cutting plane method for solving convex MINLP problems. Comput. Chem. Eng. 19, 131–136 (1995)

    Article  Google Scholar 

  35. Westerlund, T.: User’s guide for GAECP, version 5.537. An Interactive Solver for Generalized Convex MINLP-Problems Using Cutting Plane and Supporting Hyperplane Techniques. Åbo Akademi University. www.abo.fi/~twesterl/GAECPDocumentation.pdf (2017)

Download references

Acknowledgements

This research was supported by the Grant No. 294002 of the Academy of Finland. The authors also acknowledge GAMS Development Corporation for providing us license to use different GAMS solvers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapio Westerlund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Westerlund, T., Eronen, VP. & Mäkelä, M.M. On solving generalized convex MINLP problems using supporting hyperplane techniques. J Glob Optim 71, 987–1011 (2018). https://doi.org/10.1007/s10898-018-0644-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-018-0644-z

Keywords

Mathematics Subject Classification

Navigation