Journal of Global Optimization

, Volume 71, Issue 1, pp 73–90 | Cite as

Efficient multicriterial optimization based on intensive reuse of search information

  • Victor GergelEmail author
  • Evgeny Kozinov


This paper proposes an efficient method for solving complex multicriterial optimization problems, for which the optimality criteria may be multiextremal and the calculations of the criteria values may be time-consuming. The approach involves reducing multicriterial problems to global optimization ones through minimax convolution of partial criteria, reducing dimensionality by using Peano curves and implementing efficient information-statistical methods for global optimization. To efficiently find the set of Pareto-optimal solutions, it is proposed to reuse all the search information obtained in the course of optimization. The results of computational experiments indicate that the proposed approach greatly reduces the computational complexity of solving multicriterial optimization problems.


Decision making Multicriterial optimization Scalarization Dimensionality reduction Global optimization algorithm Search information Computational complexity 



This work has been supported by the Russian Science Foundation, Project No. 16-11-10150 “Novel efficient methods and software tools for time-consuming decision making problems using superior-performance supercomputers”.


  1. 1.
    Barkalov, K., Gergel, V.: Parallel global optimization on GPU. J. Glob. Optim. 1–18 (2015).
  2. 2.
    Barkalov, K., Gergel, V., Lebedev, I.: Use of xeon phi coprocessor for solving global optimization problems. In: LNCS, vol. 9251, pp. 307–318. Springer, Heidelberg (2015)Google Scholar
  3. 3.
    Barkalov, K., Gergel, V., Lebedev, I.: Solving global optimization problems on GPU cluster. In: Simos T.E. (ed.) ICNAAM 2015, AIP Conference Proceedings, vol. 1738, No. 400006 (2016)Google Scholar
  4. 4.
    Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA-A platform and programming language independent interface for search algorithms. In: Evolutionary Multi-Criterion Optimization, LNCS, vol. 2632, pp. 494–508 (2003)Google Scholar
  5. 5.
    Branke, J., Deb, K., Miettinen, K., Slowinski, R. (eds.): Multi-Objective Optimization-Interactive and Evolutionary Approaches. Springer, Berlin (2008)Google Scholar
  6. 6.
    Collette, Y., Siarry, P.: Multiobjective Optimization: Principles and Case Studies (Decision Engineering). Springer, Berlin (2011)zbMATHGoogle Scholar
  7. 7.
    Chinchuluun, A., Pardalos, P.M.: A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 154(1), 29–50 (2007). MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chiandussi, G., Codegone, M., Ferrero, S., Varesio, F.E.: Comparison of multi-objective optimization methodologies for engineering applications. Comput. Math. Appl. 63(5), 912–942 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)zbMATHGoogle Scholar
  10. 10.
    Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Berlin (2005)zbMATHGoogle Scholar
  11. 11.
    Eichfelder, G.: Scalarizations for adaptively solving multi-objective optimization problems. Comput. Optim. Appl. 44, 249–273 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Evtushenko, YuG, Posypkin, M.A.: Method of non-uniform coverages to solve the multicriteria optimization problems with guaranteed accuracy. Autom. Remote Control 75(6), 1025–1040 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Figueira, J., Greco, S., Ehrgott, M. (eds.): Multiple Criteria Decision Analysis: State of the Art Surveys. Springer, New York (2005)zbMATHGoogle Scholar
  14. 14.
    Floudas, C.A., Pardalos, M.P.: Recent Advances in Global Optimization. Princeton University Press, Princeton (2016)Google Scholar
  15. 15.
    Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. Glob. Optim. 21(1), 27–37 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gaviano, M., Lera, D., Kvasov, D.E., Sergeyev, Y.D.: Software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 29, 469–480 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gergel, V.: A unified approach to use of coprocessors of various types for solving global optimization problems. In: 2nd International Conference on Mathematics and Computers in Sciences and in Industry, pp. 13–18 (2015).
  18. 18.
    Gergel, V., Grishagin, V., Gergel, A.: Adaptive nested optimization scheme for multidimensional global search. J. Glob. Optim. 66(1), 35–51 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gergel, V., Lebedev, I.: Heterogeneous parallel computations for solving global optimization problems. Procedia Comput. Sci. 66, 53–62 (2015). CrossRefGoogle Scholar
  20. 20.
    Gergel, V., Sidorov, S.: A two-level parallel global search algorithm for solution of computationally intensive multiextremal optimization problems. In: LNCS, vol. 9251, pp. 505–515. Springer, Berlin (2015)Google Scholar
  21. 21.
    Germeyer, YuB: Introduction in Theory of Operation Research. Nauka, Moscow (1971). (In Russian)Google Scholar
  22. 22.
    Grishagin, V.A.: Operating characteristics of some global search algorithms. Probl. Stoch. Search 7, 198–206 (1978). (In Russian)zbMATHGoogle Scholar
  23. 23.
    Grishagin, V.A., Sergeyev, Y.D., Strongin, R.G.: Parallel characteristic algorithms for solving problems of global optimization. J. Glob. Optim. 10, 185–206 (1997)CrossRefzbMATHGoogle Scholar
  24. 24.
    Hill, J.D.: A search technique for multimodal surfaces. IEEE Trans. Syst. Cybern. 5(1), 2–8 (1969)CrossRefGoogle Scholar
  25. 25.
    Hillermeier, C., Jahn, J.: Multiobjective optimization: survey of methods and industrial applications. Surv. Math. Ind. 11, 1–42 (2005)zbMATHGoogle Scholar
  26. 26.
    Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin (1990)CrossRefzbMATHGoogle Scholar
  27. 27.
    Kvasov, D.E., Pizzuti, C., Sergeyev, Y.D.: Local tuning and partition strategies for diagonal GO methods. Numer. Math. 94(1), 93–106 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Köksalan, M., Wallenius, J., Zionts, S.: Multiple Criteria Decision Making: From Early History to the 21st Century. World Scientific, Singapore (2011)CrossRefGoogle Scholar
  29. 29.
    Locatelli, M., Schoen, F.: Global Optimization: Theory, Algorithms, and Applications. SIAM, Philadelphia (2013)CrossRefzbMATHGoogle Scholar
  30. 30.
    Mardani, A., Jusoh, A., Nor, K., Khalifah, Z., Zakwan, N., Valipour, A.: Multiple criteria decision-making techniques and their applications–a review of the literature from 2000 to 2014. Econ. Res.-Ekon. Istraž. 28(1), 516–571 (2015). Google Scholar
  31. 31.
    Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26, 369–395 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Miettinen, K.: Nonlinear Multiobjective Optimization. Springer, Boston (1999)zbMATHGoogle Scholar
  33. 33.
    Pintér, J.D.: Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications). Kluwer Academic Publishers, Dortrecht (1996)CrossRefzbMATHGoogle Scholar
  34. 34.
    Pardalos, P.M., Žilinskas, A., Žilinskas, J.: Non-Convex Multi-Objective Optimization. Springer, New York (2017)CrossRefzbMATHGoogle Scholar
  35. 35.
    Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. Springer, Berlin (2014)CrossRefzbMATHGoogle Scholar
  36. 36.
    Sergeyev, Y.D., Famularo, D., Pugliese, P.: Index branch-and-bound algorithm for Lipschitz univariate global optimization with multiextremal constraints. J. Glob. Optim. 21(3), 317–341 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Sergeyev, Y.D., Grishagin, V.A.: Sequential and parallel algorithms for global optimization. Optim. Methods Softw. 3, 111–124 (1994)CrossRefzbMATHGoogle Scholar
  38. 38.
    Sergeyev, Y.D., Grishagin, V.A.: Parallel asynchronous global search and the nested optimization scheme. J. Comput. Anal. Appl. 3(2), 123–145 (2001)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. Springer, New York (2013)CrossRefzbMATHGoogle Scholar
  41. 41.
    Siwale, I.: Practical multi-objective programming. Technical Report RD-14-2013. Apex Research Limited (2014)Google Scholar
  42. 42.
    Strongin, R.G.: Numerical Methods in Multiextremal Problems: Information-Statistical Algorithms. Nauka, Moscow (1978). (In Russian)zbMATHGoogle Scholar
  43. 43.
    Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Constraints. Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000, 2nd ed. 2013, 3rd ed. 2014)Google Scholar
  44. 44.
    Strongin, R.G., Gergel, V.P., Markin, D.L.: Multicriterion multiextreme optimization with nonlinear constraints. In: Lecture Notes in Economics and Mathematical Systems, vol. 351, pp. 120–127 (1988)Google Scholar
  45. 45.
    Tan, K.C., Khor, E.F., Lee, T.H.: Multi-Objective Evolutionary Algorithms and Applications. Springer, London (2005)zbMATHGoogle Scholar
  46. 46.
    Törn, A., Žilinskas, A.: Global optimization. In: LNCS, vol. 350. Springer, Berlin (1989)Google Scholar
  47. 47.
    Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Frome (2008)Google Scholar
  48. 48.
    Zavadskas, E.K., Turskis, Z., Kildienė, S.: State of art surveys of overviews on MCDM/MADM methods. Technol. Econ. Dev. Econ. 20, 165–179 (2014)CrossRefGoogle Scholar
  49. 49.
    Zhigljavsky, A.A.: Theory of Global Random Search. Kluwer Academic Publishers, Dordrecht (1991)CrossRefGoogle Scholar
  50. 50.
    Žilinskas, A., Žilinskas, J.: Adaptation of a one-step worst-case optimal univariate algorithm of bi-objective Lipschitz optimization to multidimensional problems. Commun. Nonlinear Sci. Numer. Simul. 21, 89–98 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Zitzler, E., Knowles, J., Thiele, L.: Quality assessment of Pareto set approximations. In: LNCS in Multiobjective Optimization-Interactive and Evolutionary Approaches. LNCS, vol. 5252, pp. 373–404 (2008)Google Scholar
  52. 52.
    Zhigljavsky, A., Žilinskas, A.: Stochastic Global Optimization. Springer, Berlin (2008)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Information Technology, Mathematics and MechanicsLobachevsky State University of Nizhni NovgorodNizhni NovgorodRussia

Personalised recommendations