Hartley properly and super nondominated solutions in vector optimization with a variable ordering structure

  • Shokouh Shahbeyk
  • Majid Soleimani-damaneh
  • Refail Kasimbeyli
Article
  • 24 Downloads

Abstract

In this paper, we introduce Hartley properly and super nondominated solutions in vector optimization with a variable ordering structure. We prove the connections between Benson properly nondominated, Hartley properly nondominated, and super nondominated solutions under appropriate assumptions. Moreover, we establish some necessary and sufficient conditions for newly-defined solutions invoking an augmented dual cone approach, the linear scalarization, and variational analysis tools. In addition to the theoretical results, various clarifying examples are given.

Keywords

Vector optimization Variable ordering structure (VOS) Properly nondominated solution Super nondominated solution Augmented dual cone Linear scalarization Variational analysis 

Notes

Acknowledgements

The authors would like to express their gratitude to two anonymous referees and the associate editor for their helpful comments on the earlier versions of the paper. The research of the second author was in part supported by a grant from the Iran National Science Foundation (INSF) (No. 95849588).

References

  1. 1.
    Bao, T.Q., Mordukhovich, B.S., Soubeyran, A.: Variational analysis in psychological modeling. J. Optim. Theory Appl. 164, 290–315 (2015)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bao, T.Q., Mordukhovich, B.S.: Necessary condition for super minimizers in constrained multiobjective optimization. J. Global Optim. 43, 533–552 (2009)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bao, T.Q., Mordukhovich, B.S.: Necessary nondomination conditions in set and vector optimization with variable ordering structures. J. Optim. Theory Appl. 162, 350–370 (2014)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Beck, A.: Introduction to Nonlinear Optimization. SIAM, Philadelphia (2014)CrossRefMATHGoogle Scholar
  5. 5.
    Benson, H.P.: An improved definition of proper efficiency for vector maximization with respect to cones. J. Math. Anal. Appl. 71, 232–241 (1979)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bergstresser, K., Charnes, A., Yu, P.L.: Generalization of domination structures and nondominated solutions in multicriteria decision making. J. Optim. Theory Appl. 18, 3–13 (1976)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Borwein, J.M.: Proper efficient points for maximization with respect to cones. SIAM J. Control Optim. 15, 57–63 (1977)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Borwein, J.M., Zhuang, D.: Superefficiency in vector optimization. Trans. Am. Math. Soc. 338, 105–122 (1993)CrossRefMATHGoogle Scholar
  9. 9.
    Chen, G.Y.: Existence of solutions for a vector variational inequality: an extension of the Hartmann-Stampacchia theorem. J. Optim. Theory Appl. 74, 445–456 (1992)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chen, G.Y., Yang, X.Q.: Characterizations of variable domination structures via nonlinear scalarization. J. Optim. Theory Appl. 112, 97–110 (2002)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Eichfelder, G.: Vector optimization in medical engineering, In: Pardalos, P.M., Rassias T.M. (eds.) Mathematics Without Boundaries, pp. 181–215. Springer, New York (2014)Google Scholar
  12. 12.
    Eichfelder, G.: Variable Ordering Structures in Vector Optimization. Springer, Berlin (2014)CrossRefMATHGoogle Scholar
  13. 13.
    Eichfelder, G.: Optimal elements in vector optimization with a variable ordering structure. J. Optim. Theory Appl. 151, 217–240 (2011)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Eichfelder, G., Kasimbeyli, R.: Properly optimal elements in vector optimization with variable ordering structure. J. Global Optim. 60, 689–712 (2014)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Eichfelder, G., Gerlach, T.: Characterization of properly optimal elements with variable ordering structures. Optimization 65, 571–588 (2016)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Geoffrion, A.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22, 618–630 (1968)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Guerraggio, A., Molho, E., Zaffaroni, A.: On the notion of proper efficiency in vector optimization. J. Optim. Theory Appl. 82, 1–21 (1994)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hartley, R.: On cone efficiency, cone convexity, and cone compactness. SIAM J. Appl. Math. 34, 211–222 (1978)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Henig, M.: Proper efficiency with respect to cones. J. Optim. Theory Appl. 36, 387–407 (1982)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kasimbeyli, R.: A nonlinear cone separation theorem and scalarization in nonconvex vector optimization. SIAM J. Optim. 20, 1591–1619 (2010)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Kasimbeyli, R.: A conic scalarization method in multi-objective optimization. J. Global Optim. 56(2), 279–297 (2013)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Kasimbeyli, N., Kasimbeyli, R.: A representation theorem for Bishop-Phelps cones. Pac. J. Optim. 13(1), 55–74 (2017)MathSciNetMATHGoogle Scholar
  23. 23.
    Khaledian, K., Khorram, E., Soleimani-damaneh, M.: Strongly proper efficient solutions: efficient solutions with bounded trade-offs. J. Optim. Theory Appl. 168, 864–883 (2016)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Kobis, E.: Set optimization by means of variable order relations. Optimization 66(12), 1991–2005 (2017)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Kuhn, H., Tucker, A.: Nonlinear programming. In: Neyman, J. (ed.) Proceeding of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–492. University of California Press, Berkeley, California (1951)Google Scholar
  26. 26.
    Luc, D.T., Soubeyran, A.: Variable preference relations: existence of maximal elements. J. Math. Econ. 49, 251–262 (2013)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory. Springer, Berlin (2006)Google Scholar
  28. 28.
    Rockafellar, R.T., West, R.J.B.: Varititional Analysis. Springer, Berlin (1998)CrossRefGoogle Scholar
  29. 29.
    Sayadi-bander, A., Kasimbeyli, R., Pourkarimi, L.: A coradiant based scalarization to characterize approximate solutions of vector optimization problems with variable ordering structures. Oper. Res. Lett. 45(1), 93–97 (2017)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Soleimani, B., Tammer, C.: Concepts for approximate solutions of vector optimization problems with variable order structures. Vietnam J. Math. 42, 543–566 (2014)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Soleimani, B.: Characterization of approximate solutions of vector optimization problems with a variable order structure. J. Optim. Theory Appl. 162, 605–632 (2014)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Soleimani, B., Tammer, C.: Optimality conditions for approximate solutions of vector optimization problems with variable ordering structures. Bull. Iran. Math. Soc. 42(7), 5–23 (2016)MathSciNetMATHGoogle Scholar
  33. 33.
    Yu, P.L.: Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives. J. Optim. Theory Appl. 14, 319–377 (1974)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Zamani, M., Soleimani-damaneh, M., Kabgani, A.: Robustness in nonsmooth nonlinear multi-objective programming. Eur. J. Oper. Res. 247, 370–378 (2015)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shokouh Shahbeyk
    • 1
  • Majid Soleimani-damaneh
    • 1
  • Refail Kasimbeyli
    • 2
  1. 1.School of Mathematics, Statistics and Computer Science, College of ScienceUniversity of TehranTehranIran
  2. 2.Department of Industrial EngineeringAnadolu UniversityEskisehirTurkey

Personalised recommendations