Abstract
Global optimization is a field of mathematical programming dealing with finding global (absolute) minima of multi-dimensional multiextremal functions. Problems of this kind where the objective function is non-differentiable, satisfies the Lipschitz condition with an unknown Lipschitz constant, and is given as a “black-box” are very often encountered in engineering optimization applications. Due to the presence of multiple local minima and the absence of differentiability, traditional optimization techniques using gradients and working with problems having only one minimum cannot be applied in this case. These real-life applied problems are attacked here by employing one of the mostly abstract mathematical objects—space-filling curves. A practical derivative-free deterministic method reducing the dimensionality of the problem by using space-filling curves and working simultaneously with all possible estimates of Lipschitz and Hölder constants is proposed. A smart adaptive balancing of local and global information collected during the search is performed at each iteration. Conditions ensuring convergence of the new method to the global minima are established. Results of numerical experiments on 1000 randomly generated test functions show a clear superiority of the new method w.r.t. the popular method DIRECT and other competitors.
This is a preview of subscription content,
to check access.




Similar content being viewed by others
References
Barkalov, K.A., Gergel, V.P.: Parallel global optimization on GPU. J. Glob. Optim. 66(1), 3–20 (2016)
Butz, A.R.: Space filling curves and mathematical programming. Inf. Control 12(4), 313–330 (1968)
Calvin, J.M., Žilinskas, A.: One-dimensional p-algorithm with convergence rate \(o(n^{- 3+\delta })\) for smooth functions. J. Optim. Theory Appl. 106(2), 297–307 (2000)
Evtushenko, Y.G., Posypkin, M.: A deterministic approach to global box-constrained optimization. Optim. Lett. 7(4), 819–829 (2013)
Famularo, D., Pugliese, P., Sergeyev, Ya D.: A global optimization technique for checking parametric robustness. Automatica 35, 1605–1611 (1999)
Finkel, D.E., Kelley, C.T.: Additive scaling and the DIRECT algorithm. J. Glob. Optim. 36(4), 597–608 (2006)
Gablonsky, M.J.: DIRECT v2.04 FORTRAN code with documentation. Technical report (2001). http://www4.ncsu.edu/ctk/SOFTWARE/DIRECTv204.tar.gz
Gablonsky, M. J.: Modifications of the DIRECT algorithm. Technical report, Ph.D thesis, North Carolina State University, Raleigh, NC (2001)
Gablonsky, M.J., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. Glob. Optim. 21, 27–37 (2001)
Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Ya D.: Algorithm 829: Software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 29(4), 469–480 (2003)
Gergel, V.P., Gergel, V.A.A.V.: Adaptive nested optimization scheme for multidimensional global search. J. Glob. Optim. 66(1), 35–51 (2016)
Gergel, V.P., Grishagin, V.A., Israfilov, R.A.: Local tuning in nested scheme of global optimization. Proced. Comput. Sci. 51, 865–874 (2015). (International Conference on Computational Science ICCS 2015—Computational Science at the Gates of Nature)
Gillard, J.W., Kvasov, D.E.: Lipschitz optimization methods for fitting a sum of damped sinusoids to a series of observations. Stat. Interface 10(1), 59–70 (2016)
Gourdin, E., Jaumard, B., Ellaia, R.: Global optimization of Hölder functions. J. Glob. Optim. 8, 323–348 (1996)
Grishagin, V.A., Israfilov, R.A.: Global search acceleration in the nested optimization scheme. AIP Conf. Proc. 1738, 400010 (2016)
Grishagin, V.A., Israfilov, R.A., Sergeyev, Ya D.: Convergence conditions and numerical comparison of global optimization methods based on dimensionality reduction schemes. Appl. Math. Comput. 318, 270–280 (2018)
Horst, R., Pardalos, P.M. (eds.): Handbook of Global Optimization, vol. 1. Kluwer Academic Publishers, Dordrecht (1995)
Horst, R., Tuy, H.: Global Optimization—Deterministic Approaches. Springer-Verlag, Berlin (1996)
Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79, 157–181 (1993)
Kvasov, D.E., Pizzuti, C., Sergeyev, Ya D.: Local tuning and partition strategies for diagonal GO methods. Numer. Math. 94(1), 93–106 (2003)
Kvasov, D.E., Sergeyev, Ya D.: Lipschitz global optimization methods in control problems. Autom. Remote Control 74(9), 1435–1448 (2013)
Kvasov, D.E., Sergeyev, Ya D.: Deterministic approaches for solving practical black-box global optimization problems. Adv. Eng. Softw. 80, 58–66 (2015)
Kvasov, D.E., Sergeyev, Ya D.: A univariate global search working with a set of Lipschitz constants for the first derivative. Optim. Lett. 3(2), 303–318 (2009)
Lera, D., Sergeyev, Ya D.: Global minimization algorithms for Hölder functions. BIT 42(1), 119–133 (2002)
Lera, D., Sergeyev, Ya D.: Acceleration of univariate global optimization algorithms working with Lipschitz functions and Lipschitz first derivatives. SIAM J. Optim. 23(1), 508–529 (2013)
Lera, D., Sergeyev, Ya D.: Deterministic global optimization using space-filling curves and multiple estimates of Lipschitz and Hölder constants. Commun. Nonlinear Sci. Numer. Simul. 23, 328–342 (2015)
Lera, D., Sergeyev, Ya D.: An information global minimization algorithm using the local improvement technique. J. Glob. Optim. 48(1), 99–112 (2010)
Lera, D., Sergeyev, Ya D.: Lipschitz and Hölder global optimization using space-filling curves. Appl. Numer. Maths. 60, 115–129 (2010)
Liuzzi, G., Lucidi, S., Piccialli, V.: A direct-based approach exploiting local minimizations for the solution for large-scale global optimization problem. Comput. Optim. Appl. 45(2), 353–375 (2010)
Liuzzi, G., Lucidi, S., Piccialli, V.: A partition-based global optimization algorithm. J. Glob. Optim. 48(1), 113–128 (2010)
Paulavičius, R., Chiter, L., Žilinskas, J.: Global optimization based on bisection of rectangles, function values at diagonals, and a set of Lipschitz constants. J. Glob. Optim. (2017). https://doi.org/10.1007/s10898-016-0485-6
Paulavičius, R., Sergeyev, Ya D., Kvasov, D.E., Žilinskas, J.: Globally-biased DISIMPL algorithm for expensive global optimization. J. Glob. Optim. 59(2–3), 545–567 (2014)
Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. SpringerBriefs in Optimization. Springer, New York (2014)
Pintér, J.D.: Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications). Kluwer Academic Publishers, Dordrecht (1996)
Pintér, J.D.: Global optimization: software, test problems, and applications. In: Pardalos, P.M., Romeijn, H.E. (eds.) Handbook of Global Optimization, vol. 2, pp. 515–569. Kluwer Academic Publishers, Dordrecht (2002)
Piyavskij, S.A.: An algorithm for finding the absolute extremum of a function. USSR Comput. Math. Math. Phys. 12(4), 57–67 (1972). (in Russian: Zh. Vychisl. Mat. Mat. Fiz., 12(4) (1972), pp. 888–896)
Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer-Verlag, New York (1993)
Sagan, H.: Space-Filling Curves. Springer, New York (1994)
Sergeyev, Ya D.: An information global optimization algorithm with local tuning. SIAM J. Optim. 5(4), 858–870 (1995)
Sergeyev, Ya D.: A one-dimensional deterministic global minimization algorithm. Comput. Math. Math. Phys. 35(5), 705–717 (1995)
Sergeyev, Ya D., Daponte, P., Grimaldi, D., Molinaro, A.: Two methods for solving optimization problems arising in electronic measurements and electrical engineering. SIAM J. Optim. 10(1), 1–21 (1999)
Sergeyev, Ya D., Grishagin, V.A.: Sequential and parallel algorithms for global optimization. Optim. Methods Softw. 3, 111–124 (1994)
Sergeyev, Ya D., Kvasov, D.E.: Deterministic Global Optimization: An Introduction to the Diagonal Approach. Springer, New York (2017)
Sergeyev, Ya D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. SpringerBriefs in Optimization. Springer, New York (2013)
Strongin, R.G.: Numerical Methods in Multiextremal Problems: Information-Statistical Algorithms. Nauka, Moscow (1978). (In Russian)
Strongin, R.G., Sergeyev, Ya D.: Global optimization: fractal approach and non-redundant parallelism. J. Glob. Optim. 27, 25–50 (2003)
Strongin, R .G., Sergeyev, Ya D.: Global Optimization with Non-Convex Constraints: Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000). (2nd ed., 2012; 3rd ed., 2014, Springer, New York)
Žilinskas, A.: On similarities between two models of global optimization: statistical models and radial basis functions. J. Glob. Optim. 48(1), 173–182 (2010)
Žilinskas, A., Žilinskas, J.: Parallel hybrid algorithm for global optimization of problems occurring in MDS-based visualization. Comput. Math. Appl. 52(1–2), 211–224 (2006)
Žilinskas, A., Žilinskas, J.: A hybrid global optimization algorithm for non-linear least squares regression. J. Glob. Optim. 56(2), 265–277 (2013)
Zhigljavsky, A.A.: Theory of Global Random Search. Kluwer Academic Publishers, Dordrecht (1991)
Zhigljavsky, A.A., Žilinskas, A.: Stochastic Global Optimization. Springer, New York (2008)
Acknowledgements
The authors thank the unknown reviewers for their very useful comments that have allowed the authors to improve the manuscript. The research of Ya. D. Sergeyev was supported by the Russian Science Foundation, project No 15-11-30022 “Global optimization, supercomputing computations, and applications”.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lera, D., Sergeyev, Y.D. GOSH: derivative-free global optimization using multi-dimensional space-filling curves. J Glob Optim 71, 193–211 (2018). https://doi.org/10.1007/s10898-017-0589-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-017-0589-7