Advertisement

Journal of Global Optimization

, Volume 70, Issue 4, pp 707–718 | Cite as

How to project onto extended second order cones

  • O. P. Ferreira
  • S. Z. Németh
Article
  • 227 Downloads

Abstract

The extended second order cones were introduced by Németh and Zhang (J Optim Theory Appl 168(3):756–768, 2016) for solving mixed complementarity problems and variational inequalities on cylinders. Sznajder (J Glob Optim 66(3):585–593, 2016) determined the automorphism groups and the Lyapunov or bilinearity ranks of these cones. Németh and Zhang (Positive operators of extended Lorentz cones, 2016. arXiv:1608.07455v2) found both necessary conditions and sufficient conditions for a linear operator to be a positive operator of an extended second order cone. In this note we give formulas for projecting onto the extended second order cones. In the most general case the formula depends on a piecewise linear equation for one real variable which is solved by using numerical methods.

Keywords

Semi-smooth equation Extended second order cone Metric projection Piecewise linear Newton method 

References

  1. 1.
    Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. Ser. B 95(1), 3–51 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barrios, J.G., Bello Cruz, J.Y., Ferreira, O.P., Németh, S.Z.: A semi-smooth Newton method for a special piecewise linear system with application to positively constrained convex quadratic programming. J. Comput. Appl. Math. 301, 91–100 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bello Cruz, J.Y., Ferreira, O.P., Németh, S., Prudente, L.F.: A semi-smooth Newton method for projection equations and linear complementarity problems with respect to the second order cone. Linear Algebra Appl. 513, 160–181 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, J.S., Tseng, P.: An unconstrained smooth minimization reformulation of the second-order cone complementarity problem. Math. Program. Ser. B 104(2–3), 293–327 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chi, C.Y., Li, W.C., Lin, C.H.: Convex Optimization for Signal Processing and Communications: From Fundamentals to Applications. CRC Press, Boca Raton (2017)CrossRefzbMATHGoogle Scholar
  6. 6.
    Fukushima, M., Luo, Z.Q., Tseng, P.: Smoothing functions for second-order-cone complementarity problems. SIAM J. Optim. 12(2), 436–460 (2001/02)Google Scholar
  7. 7.
    Gajardo, P., Seeger, A.: Equilibrium problems involving the Lorentz cone. J. Glob. Optim. 58(2), 321–340 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gazi, O.: Understanding Digital Signal Processing, Springer Topics in Signal Processing, vol. 13. Springer, Singapore (2018)CrossRefzbMATHGoogle Scholar
  9. 9.
    Gowda, M.S., Tao, J.: On the bilinearity rank of a proper cone and Lyapunov-like transformations. Math. Program. Ser. A 147(1–2), 155–170 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gowda, M.S., Trott, D.: On the irreducibility, Lyapunov rank, and automorphisms of special Bishop–Phelps cones. J. Math. Anal. Appl. 419(1), 172–184 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. I. Fundamentals, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 305. Springer, Berlin (1993)zbMATHGoogle Scholar
  12. 12.
    Ko, C.H., Chen, J.S., Yang, C.Y.: Recurrent neural networks for solving second-order cone programs. Neurocomputing 74, 3464–3653 (2011)CrossRefGoogle Scholar
  13. 13.
    Kong, L., Xiu, N., Han, J.: The solution set structure of monotone linear complementarity problems over second-order cone. Oper. Res. Lett. 36(1), 71–76 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284(1–3), 193–228 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Luo, G.M., An, X., Xia, J.Y.: Robust optimization with applications to game theory. Appl. Anal. 88(8), 1183–1195 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Malik, M., Mohan, S.R.: On Q and R\(_0\) properties of a quadratic representation in linear complementarity problems over the second-order cone. Linear Algebra Appl. 397, 85–97 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Markowitz, H.M.: Portfolio Selection: Efficient Diversification of Investments. Cowles Foundation for Research in Economics at Yale University, Monograph 16. Wiley, New York; Chapman & Hall, London (1959)Google Scholar
  18. 18.
    Moreau, J.J.: Décomposition orthogonale d’un espace hilbertien selon deux cônes mutuellement polaires. C. R. Acad. Sci. Paris 255, 238–240 (1962)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Németh, S., Zhang, G.: Positive operators of extended Lorentz cones. arXiv:1608.07455v2 (2016)
  20. 20.
    Németh, S.Z., Zhang, G.: Extended Lorentz cones and mixed complementarity problems. J. Glob. Optim. 62(3), 443–457 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Németh, S.Z., Zhang, G.: Extended Lorentz cones and variational inequalities on cylinders. J. Optim. Theory Appl. 168(3), 756–768 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Nishimura, R., Hayashi, S., Fukushima, M.: Robust Nash equilibria in \(N\)-person non-cooperative games: uniqueness and reformulation. Pac. J. Optim. 5(2), 237–259 (2009)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Orlitzky, M., Gowda, M.S.: An improved bound for the Lyapunov rank of a proper cone. Optim. Lett. 10(1), 11–17 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Rudolf, G., Noyan, N., Papp, D., Alizadeh, F.: Bilinear optimality constraints for the cone of positive polynomials. Math. Program. Ser. B 129(1), 5–31 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sznajder, R.: The Lyapunov rank of extended second order cones. J. Glob. Optim. 66(3), 585–593 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Trott, D.W.: Topheavy and special Bishop–Phelps cones, Lyapunov rank, and related topics. ProQuest LLC, Ann Arbor (2014). Thesis (Ph.D.), University of Maryland, Baltimore CountyGoogle Scholar
  27. 27.
    Ye, K., Parpas, P., Rustem, B.: Robust portfolio optimization: a conic programming approach. Comput. Optim. Appl. 52(2), 463–481 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Yonekura, K., Kanno, Y.: Second-order cone programming with warm start for elastoplastic analysis with von Mises yield criterion. Optim. Eng. 13(2), 181–218 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Zhang, L.L., Li, J.Y., Zhang, H.W., Pan, S.H.: A second order cone complementarity approach for the numerical solution of elastoplasticity problems. Comput. Mech. 51(1), 1–18 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.IME/UFGGoiâniaBrazil
  2. 2.School of MathematicsUniversity of BirminghamBirminghamUK

Personalised recommendations