Skip to main content
Log in

Evaluating the impacts of the external supply risk in a natural gas supply chain: the case of the Italian market

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A large part of the European natural gas imports originates from unstable regions exposed to the risk of supply failure due to economical and political reasons. This has increased the concerns on the security of supply in the European natural gas market. In this paper, we analyze the security of external supply of the Italian gas market that mainly relies on natural gas imports to cover its internal demand. To this aim, we develop an optimization problem that describes the equilibrium state of a gas supply chain where producers, mid-streamers, and final consumers exchange natural gas and liquefied natural gas. Both long-term contracts (LTCs) and spot pricing systems are considered. Mid-streamers are assumed to be exposed to the external supply risk, which is estimated with indicators that we develop starting from those already existing in the literature. In addition, we investigate different degrees of mid-streamers’ flexibility by comparing a situation where mid-streamers fully satisfy the LTC volume clause (“No FLEX” assumption) to a case where the fulfillment of this volume clause is not compulsory (“FLEX” assumption). Our analysis shows that, in the “No FLEX” case, mid-streamers do not significantly change their supplying choices even when the external supply risk is considered. Under this assumption, they face significant profit losses that, instead, disappear in the “FLEX” case when mid-streamers are more flexible and can modify their supply mix. However, the “FLEX” strategy limits the gas availability in the supply chain leading to a curtailment of the social welfare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. See Eurostat at http://ec.europa.eu/eurostat/statistics-explained/index.php/Natural_gas_consumption_statistics.

  2. Note that all the other indicators presented above are computed per each destination country even though not explicitly indicated.

  3. This assumption is taken from Egging et al. [8].

  4. This annual report is in Italian and refer to 2015 data. An English version is available at http://www.autorita.energia.it/allegati/relaz_ann/15/annual_report2015.pdf but refers to 2014 data.

  5. See Table 14 at page 2410 of Egging et al. [8].

  6. See BP at http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/natural-gas/natural-gas-reserves.html.

  7. Gross domestic product (GDP) measures the final market value of all goods and services produced within a country. It is the most frequently used indicator of economic activity. The GDP by expenditure approach measures total final expenditures (at purchasers’ prices), including exports less imports. This concept is adjusted for inflation. For our simulation, we GDP data from Bloomberg (ticker: EUGDEMU). See https://www.bloomberg.com/quote/EUGNEMUY:IND.

  8. See http://www.stogit.it/en/about-us/where-you-can-find-us/storage-sites.html.

  9. See https://www.prsgroup.com/category/risk-index.

  10. See http://www.cedigaz.org/products/natural-gas-database.aspx.

  11. Note that, in the “No FLEX” case, the weighted average gas and LNG prices computed over the involved supplying countries and paid by the mid-streamer are: 0.50 €/cm (gas LTCs), 0.66 €/cm (LNG LTCs), 0.32 €/cm (gas spot), and 0.50 €/cm (LNG spot). In contrast, the weighted average price that the mid-streamer applies to final consumers is 0.48 €/cm).

References

  1. Abada, I., Ehrenmann, A., Smeers, Y.: Modeling gas markets with endogenous long-term contracts. Oper. Res. 65(4), 856–877 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. AEEGSI-Autorità per l’Energia Elettrica il Gas e il Sistema Idrico: Relazione annuale sullo stato dei servizi e sull’attività svolta. http://www.autorita.energia.it/it/relaz_ann/16/16.htm (2016)

  3. Blyth, W., Lefevre, N.: Energy security and climate change: an assessment framework. OECD/International Energy Agency Information Paper (2004)

  4. BP: Statistical review of world energy 2016-natural gas. http://www.bp.com/content/dam/bp/pdf/energy-economics/statistical-review-2016/bp-statistical-review-of-world-energy-2016-natural-gas.pdf (2016)

  5. Cohen, G., Joutz, F., Loungani, P.: Measuring energy security: trends in the diversification of oil and natural gas supplies. Energy Policy 39, 4860–4869 (2011)

    Article  Google Scholar 

  6. Dirkse, S.P., Ferris, M.C.: The PATH solver: a nonmomotone stabilization scheme for mixed complementarity problems. Optim. Methods Softw. 5, 123–156 (1995)

    Article  Google Scholar 

  7. Egging, R.G., Gabriel, S.A.: Examining market power in the European natural gas market. Energy Policy 34, 2762–2778 (2006)

    Article  Google Scholar 

  8. Egging, R., Gabriel, S.A., Holz, F., Zhuang, J.: A complementarity model for the European natural gas market. Energy Policy 36, 2385–2414 (2008)

    Article  Google Scholar 

  9. Egging, R., Holz, F., Gabriel, S.A.: The World Gas Model. A multi-period mixed complementarity model for the global natural gas market. Energy 35, 4016–4029 (2010)

    Article  Google Scholar 

  10. Egging, R., Holz, F.: Risks in global natural gas markets: investment, hedging and trade. Energy Policy 94, 468–479 (2016)

    Article  Google Scholar 

  11. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, Berlin (2003)

    MATH  Google Scholar 

  12. Franza, L.: Long-term gas import contracts in Europe. CIEP paper, 8. http://www.clingendaelenergy.com/inc/upload/files/Ciep_paper_2014-08_web_1.pdf (2014)

  13. Frondel, M., Schmidt, C.M.: Measuring energy security—a conceptual note. Ruhr Economics Papers 52 RWI, Essen (2008)

  14. Gabriel, S.A., Conejo, A.J., Fuller, D., Hobbs, B.F., Ruiz, C.: Complementarity Modeling in Energy Markets. Springer, New York (2013)

    Book  MATH  Google Scholar 

  15. GIIGNL: The LNG industry. http://www.giignl.org/sites/default/files/PUBLIC_AREA/Publications/giignl_2016_annual_report.pdf (2016)

  16. Grubb, M., Butler, L., Twomey, P.: Diversity and security in UK electricity generation: the influence of low-carbon objectives. Energy Policy 34, 4050–4062 (2005)

    Article  Google Scholar 

  17. Gupta, E.: Oil vulnerability index of oil-importing countries. Energy Policy 36, 1195–1211 (2008). (Springer (2013))

    Article  Google Scholar 

  18. Holz, F., Engerer, H., Kemfert, C., Richter, P.M., von Hirschhausen, C.: European Natural Gas Infrastructure: The Role of Gazprom in European Natural Gas Supplies, vol. 81. DIW Berlin-Politikberatung kompakt (2014)

  19. Holz, F., Richter, P.M., Egging, R.: The role of natural gas in a low-carbon Europe: infrastructure and supply security. Energy J. 37, 33–59 (2016)

    Article  Google Scholar 

  20. Honoré, A.: The Italian Gas Market: Challenges and Opportunities, vol. 76. The Oxford Institute of Energy Studies. https://www.oxfordenergy.org/wpcms/wp-content/uploads/2013/06/NG-76.pdf (2013)

  21. IEA-International Energy Agency: Toward a Sustainable Energy Future. OECD/IEA, Paris (2001)

  22. IEA-International Energy Agency: Energy Security and Climate Change; Assessing Interactions. IEA, Paris (2007)

  23. IEA-International Energy Agency: IEA Annual Gas Statistics Database. http://wds.iea.org/wds/pdf/Gas_documentation.pdf (2016)

  24. Kruyt, B., van Vuuren, D.P., de Vries, H.J.M., Groenenberg, H.: Indicators for energy security. Energy Policy 37, 2166–2181 (2009)

    Article  Google Scholar 

  25. Le Coq, C., Paltseva, E.: Measuring the security of external energy supply in the European Union. Energy Policy 37(11), 4474–4481 (2009)

    Article  Google Scholar 

  26. Marìn Quemada, J.M., Garcìa-Verdugo, J., Escribano, G.: Energy Security for the EU in the 21st Century: Markets. Geopolitics and Corridors. Routledge, Londra (2012)

    Google Scholar 

  27. Melling, A.J.: Natural gas pricing and its future-Europe ad the battleground. Carnegie Endowment for international peace. http://carnegieendowment.org/files/gas_pricing_europe.pdf

  28. Nagurney, A.: Network Economics: A Variational Inequality Approach. Kluwer, Dordrecht (1999)

    Book  MATH  Google Scholar 

  29. NERA: Updated macroeconomic impacts of LNG exports from the United States. http://www.nera.com/content/dam/nera/publications/archive2/PUB_LNG_Update_0214_FINAL.pdf (2014)

  30. Neumann, A.: Security of supply in liberalised European gas market. Diploma thesis, European University Viadrina. https://tu-dresden.de/gsw/wirtschaft/ee2/ressourcen/dateien/dateien/ordner_publikationen/neumann_security_of_supply_diplomarbeit.pdf?lang=en (2004)

  31. SNAM: Annual report. http://www.snam.it/export/sites/snam-rp/repository/ENG_file/investor_relations/reports/annual_reports/2016/SNAM_2016_Annual_Report.pdf (2016)

Download references

Acknowledgements

The E. Allevi and G. Oggioni are grateful to the UniBS H&W Project “Brescia 20-20-20” for the financial support. The research of G. Oggioni have also been supported by “Gruppo Nazionale per il Calcolo Scientifico (GNCS-INdAM)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Oggioni.

Appendices

Appendix A: Complementarity formulation of the welfare optimization problem under the “no flexibility” assumption

In this appendix, we report the complementarity formulation of the welfare optimization problem presented in Sect. 3.4.1.

$$\begin{aligned}&0 \le -\gamma _{nt}+ {\partial C_{nt}\left( X^{G}_{nt}\right) \over \partial X_{nt}^{G}}+\overline{\gamma }_{nt} \perp X^G_{nt} \ge 0\quad \forall n, \forall t \end{aligned}$$
(42)
$$\begin{aligned}&0 \le - (1-\alpha _n) \cdot \delta _{nt}+(1-\alpha _n)\cdot \overline{\delta }_{nt} +\gamma _{nt}+ {\partial LC_{nt}\left( X^{{ LNG}}_{nt}\right) \over \partial X_{nt}^{{ LNG}}}\perp X^{{ LNG}}_{nt} \ge 0\ \forall n, \forall t\nonumber \\ \end{aligned}$$
(43)
$$\begin{aligned}&0 \le - p^{G}_{nmt} + ptc_{nm}^G+ \gamma _{nt}\perp x^G_{nmt} \ge 0\quad \forall n, \forall m, \forall t \end{aligned}$$
(44)
$$\begin{aligned}&0 \le -p^{SpotG}_{t} + \gamma _{nt}+ptc_{n}^{SpotG}+ \sum _{f=1}^F\varGamma _{fn} \cdot \kappa _{ft} \perp x^{SpotG}_{nt}\ge 0\quad \forall n, \forall t \quad \quad \end{aligned}$$
(45)
$$\begin{aligned}&0 \le -p^{{ LNG}}_{nmt} + stc^{{ LNG}}_{nm}+ \delta _{nt} \perp x^{{ LNG}}_{nmt}\ge 0\quad \forall n, \forall m, \forall t \quad \quad \end{aligned}$$
(46)
$$\begin{aligned}&0 \le -p^{Spot{ LNG}}_{nmt} + stc^{{ LNG}}_{nm}+ \delta _{nt} \perp x^{Spot{ LNG}}_{nmt}\ge 0\quad \forall n, \forall m, \forall t \quad \quad \end{aligned}$$
(47)
$$\begin{aligned}&0 \le -p_{st}+ dc_{ms} +\lambda _{mt} \perp z_{mst}\ge 0 \quad \forall m, \forall s, \forall t \end{aligned}$$
(48)
$$\begin{aligned}&0 \le -(1-\beta _m) \cdot \eta _{mt}+{\partial RC_{m}\left( Y^{{ LNG}}_{mt}\right) \over \partial Y^{{ LNG}}_{mt}}+(1-\beta _m) \cdot \overline{\eta }_{mt} \perp Y^{{ LNG}}_{mt} \ge 0 \quad \forall m, \forall t \end{aligned}$$
(49)
$$\begin{aligned}&0 \le -\lambda _{mt} -\psi _{nm}^G+\varPi _{nm}^{G} \cdot p^{G}_{nmt}+ \sum _{f=1}^F\varGamma _{fn} \cdot \kappa _{ft} \perp y^G_{nmt} \ge 0 \quad \forall n, \forall m, \forall t \end{aligned}$$
(50)
$$\begin{aligned}&0 \le -\lambda _{mt}+p^{SpotG}_{t} \perp y^{SpotG}_{mt} \ge 0 \quad \forall m, \forall t \end{aligned}$$
(51)
$$\begin{aligned}&0 \le - \lambda _{mt} -\psi _{nm}^{{ LNG}}+\varPi _{nm}^{{ LNG}}\cdot p^{{ LNG}}_{nmt} +\eta _m\perp y^{{ LNG}}_{nmt} \ge 0 \quad \forall n, \forall m, \forall t \quad \quad \end{aligned}$$
(52)
$$\begin{aligned}&0 \le - \lambda _{mt}+p^{{ LNG}}_{nmt} +\eta _m \perp y^{Spot{ LNG}}_{nmt} \ge 0 \quad \forall m, \forall t \quad \quad \end{aligned}$$
(53)
$$\begin{aligned}&0 \le -p^{SpotG}_{t}+\lambda _{mt} \perp q^{SpotG}_{mt} \ge 0 \quad \forall m, \forall t \end{aligned}$$
(54)
$$\begin{aligned}&0 \le -\mu _{m} + {\partial I_{m1}\left( i_{m1}\right) \over \partial i_{m1}} +\nu _{m}+\lambda _{m1}\perp i_{m1} \ge 0 \quad \forall m, t=1 \end{aligned}$$
(55)
$$\begin{aligned}&0 \le -\lambda _{m2} +\mu _{m}+\sigma _m+\phi _m\perp w_{m2} \ge 0 \quad \forall m, \forall t=2 \end{aligned}$$
(56)
$$\begin{aligned}&0 \le \bar{X}_{n}-X^G_{nt} \perp \overline{\gamma }_{nt} \ge 0 \quad \forall n, \forall t \end{aligned}$$
(57)
$$\begin{aligned}&0 \le \bar{L}_{n}- (1-\alpha _n) \cdot X^{{ LNG}}_{nt} \perp \overline{\delta }_{nt} \ge 0 \quad \forall n, \forall t \end{aligned}$$
(58)
$$\begin{aligned}&0 \le \bar{R}_{m}- (1-\beta _m) \cdot Y^{{ LNG}}_{mt} \perp \overline{\eta }_{mt} \ge 0 \quad \forall m, \quad \forall t\end{aligned}$$
(59)
$$\begin{aligned}&0 \le \sum _{n=1}^N y_{nmt}^{G}+ \sum _{n=1}^N y^{{ LNG}}_{nmt}+ y^{SpotG}_{mt}+ \sum _{n=1}^N y^{Spot{ LNG}}_{nmt}+\nonumber \\&-i_{mt} -\sum _{s=1}^S z_{mst}- q_{mt}^{SpotG}\perp \lambda _{mt} \ge 0 \quad \forall m, t=1 \end{aligned}$$
(60)
$$\begin{aligned}&0 \le \sum _{n=1}^N y_{nmt}^{G}+ \sum _{n=1}^N y^{{ LNG}}_{nmt}+ y^{SpotG}_{mt}+ \sum _{n=1}^N y^{Spot{ LNG}}_{nmt}+w_{mt} +\nonumber \\&-\sum _{s=1}^S z_{mst}- q_{mt}^{SpotG} \perp \lambda _{mt} \ge 0 \quad \forall m, \quad t=2 \end{aligned}$$
(61)
$$\begin{aligned}&0 \le i_{m1}-w_{m2} \perp \mu _{m}\ge 0 \quad \forall m \end{aligned}$$
(62)
$$\begin{aligned}&0 \le \bar{I}_{m}- i_{m1} \perp \nu _{m}\ge 0 \quad \forall m \end{aligned}$$
(63)
$$\begin{aligned}&0 \le \bar{W}_{m}- w_{m2} \perp \sigma _{m} \ge 0 \quad \forall m\end{aligned}$$
(64)
$$\begin{aligned}&0 \le {{WG}_{m} }- \theta _2 \cdot w_{m2} \perp \phi _{m} \ge 0 \quad \forall m \end{aligned}$$
(65)
$$\begin{aligned}&0 \le \sum _t \theta _t \cdot y_{nmt}^{G} -\tau _{nm} \perp \psi _{mn}^{G}\ge 0 \quad \forall n, \forall m \end{aligned}$$
(66)
$$\begin{aligned}&0 \le \sum _t \theta _t \cdot y_{nmt}^{{ LNG}} -\xi _{nm}\perp \psi _{mn}^{{ LNG}} \ge 0 \quad \forall n, \forall m \end{aligned}$$
(67)
$$\begin{aligned}&0 \le \varUpsilon _{ft}-\left( \sum _{n=1}^N\sum _{m=1}^M \varGamma _{fn} \cdot y^{G}_{nmt}+ \sum _{n=1}^N \varGamma _{fn} \cdot x^{SpotG}_{nt} \right) \perp \kappa _{ft}\ge 0 \quad \forall t \end{aligned}$$
(68)
$$\begin{aligned}&0 \le p_{st}-a_{st}+b_{st} \cdot d_{st} \perp d_{st} \ge 0 \quad \forall s, \forall t\end{aligned}$$
(69)
$$\begin{aligned}&X^G_{nt}-\left( \sum _{m=1}^M x^G_{nmt}+x^{SpotG}_{nt}+X^{{ LNG}}_{nt} \right) = 0 \quad \forall n, \forall t \qquad (\gamma _{nt}: \mathrm{free}) \end{aligned}$$
(70)
$$\begin{aligned}&(1-\alpha _n) \cdot X^{{ LNG}}_{nt}-\left( \sum _{m=1}^M x^{{ LNG}}_{nmt}+\sum _{m=1}^M x^{Spot{ LNG}}_{nmt} \right) = 0 \quad \forall n, \forall t \qquad (\delta _{nt}: \mathrm{free})\end{aligned}$$
(71)
$$\begin{aligned}&(1-\beta _m) \cdot Y^{{ LNG}}_{mt} -\left( \sum _{n=1}^N y^{{ LNG}}_{nmt}+\sum _{n=1}^N y^{Spot{ LNG}}_{nmt}\right) = 0 \ \forall m, \forall t \ ({\eta }_{mt}: \mathrm{free})\end{aligned}$$
(72)
$$\begin{aligned}&x_{nmt}^{G}- \varPi _{nm}^{G}\cdot y_{nmt}^{G} = 0 \quad \forall n, \forall m, \forall t \ (p^{G}_{nmt}: \mathrm{free}) \end{aligned}$$
(73)
$$\begin{aligned}&\sum _{n=1}^N x_{nt}^{SpotG}+q_{mt}^{SpotG}-\sum _{m=1}^M y_{mt}^{SpotG} = 0 \quad \forall t \quad (p^{SpotG}_t: \mathrm{free}) \end{aligned}$$
(74)
$$\begin{aligned}&{x}^{{ LNG}}_{mnt}- \varPi _{nm}^{{ LNG}}\cdot y_{mnt}^{{ LNG}}= 0 \quad \forall n, \forall m, \quad \forall t \qquad (p_{mnt}^{{ LNG}}: \mathrm{free}) \end{aligned}$$
(75)
$$\begin{aligned}&x_{nmt}^{Spot{ LNG}}- y_{nmt}^{Spot{ LNG}} = 0 \quad \forall n, \forall m, \forall t \quad (p^{Spot{ LNG}}_{nmt}: \mathrm{free}) \end{aligned}$$
(76)
$$\begin{aligned}&\sum _{m} {z}_{mst}- d_{st} = 0 \quad \forall s, \forall t \qquad (p_{st}: \mathrm{free}) \end{aligned}$$
(77)

Appendix B: Complementarity formulation of the welfare optimization problem under the “flexibility” assumption

To model the “flexibility” assumption we only replace constraints (31) and (32) in the welfare optimization problem described in Sect. 3.4.1 with the constraints (39) and (40) presented in Sect. 3.4.2. This modification leads to some changes in the KKT conditions presented in “Appendix A”. In particular, conditions (50), (52), (66), and (67) are respectively substituted with the following ones:

$$\begin{aligned}&0 \le -\lambda _{mt} +\psi _{nm}^G+\varPi _{nm}^{G} \cdot p^{G}_{nmt}+ \sum _{f=1}^F\varGamma _{fn} \cdot \kappa _{ft} \perp y^G_{nmt} \ge 0 \quad \forall n, \forall m, \forall t \end{aligned}$$
(78)
$$\begin{aligned}&0 \le - \lambda _{mt} +\psi _{nm}^{{ LNG}}+\varPi _{nm}^{{ LNG}}\cdot p^{{ LNG}}_{nmt} +\eta _m\perp y^{{ LNG}}_{nmt} \ge 0 \quad \forall n, \forall m, \forall t \quad \end{aligned}$$
(79)
$$\begin{aligned}&0 \le \tau _{nm}-\sum _t \theta _t \cdot y_{nmt}^{G} \perp \psi _{mn}^{G}\ge 0 \quad \forall n, \forall m \end{aligned}$$
(80)
$$\begin{aligned}&0 \le \xi _{nm} -\sum _t \theta _t \cdot y_{nmt}^{{ LNG}}\perp \psi _{mn}^{{ LNG}}\ge 0 \quad \forall n, \forall m \end{aligned}$$
(81)

More precisely, since constraints (39) and (40) impose upper bounds on the primal variables \(y^G_{nmt}\) and \( y^{{ LNG}}_{nmt}\), the associated dual variables \(\psi _{mn}^{G}\) and \(\psi _{mn}^{{ LNG}}\) enter with a positive sign in the KKT conditions (78) and (79) of these primal variables. The reverse happens in the complementarity formulation of the optimization problem under the “no flexibility” assumption. Since constraints (31) and (32) define lower bounds on variables \(y^G_{nmt}\) and \( y^{{ LNG}}_{nmt}\) the associated dual variables \(\psi _{mn}^{G}\) and \(\psi _{mn}^{{ LNG}}\) enter with a negative sign in the KKT conditions (50) and (52) of these primal variables. Finally, all the other KKT conditions are as indicated in “Appendix A”.

Appendix C: Additional results

Fig. 7
figure 7

Volumes of gas exchanged via LTCs under the “Risk” and “No FLEX” assumptions (mcm/day)

Fig. 8
figure 8

Volumes of LNG exchanged via LTCs under the “Risk” and “No FLEX” assumptions (mcm/day)

Fig. 9
figure 9

Volumes of spot gas exchanged under the “Risk” and “No FLEX” assumptions (mcm/day)

Fig. 10
figure 10

Volumes of spot LNG exchanged under the “Risk” and “No FLEX” assumptions (mcm/day)

Fig. 11
figure 11

Volumes of natural gas exchanged via LTCs under the “Risk” and “FLEX” assumptions (mcm/day)

Fig. 12
figure 12

Volumes of spot gas exchanged under the “Risk” and “FLEX” assumptions (mcm/day)

Fig. 13
figure 13

Volumes of spot LNG exchanged under the “Risk” and “FLEX” assumptions (mcm/day)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allevi, E., Boffino, L., De Giuli, M.E. et al. Evaluating the impacts of the external supply risk in a natural gas supply chain: the case of the Italian market. J Glob Optim 70, 347–384 (2018). https://doi.org/10.1007/s10898-017-0584-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-017-0584-z

Keywords

Navigation