Ahmadi, A.A., Majumdar, A.: DSOS and SDSOS optimization: LP and SOCP-based alternatives to sum of squares optimization. In: Information Sciences and Systems (CISS), 2014 48th Annual Conference on, pp. 1–5. IEEE (2014)
Ahmed, F., Dür, M., Still, G.: Copositive programming via semi-infinite optimization. J. Optim. Theory Appl. 159(2), 322–340 (2013)
MathSciNet
Article
MATH
Google Scholar
Anjos, M.F., Lasserre, J.B.: Handbook on Semidefinite, Conic and Polynomial Optimization, vol. 166. Springer, Berlin (2011)
MATH
Google Scholar
Arima, N., Kim, S., Kojima, M.: A quadratically constrained quadratic optimization model for completely positive cone programming. SIAM J. Optim. 23(4), 2320–2340 (2013)
MathSciNet
Article
MATH
Google Scholar
Arima, N., Kim, S., Kojima, M.: Extension of completely positive cone relaxation to moment cone relaxation for polynomial optimization. J. Optim. Theory Appl. 168(3), 884–900 (2016)
MathSciNet
Article
MATH
Google Scholar
Bai, L., Mitchell, J.E., Pang, J.-S.: On conic QPCCs, conic QCQPs and completely positive programs. Math. Program. 159(1–2), 109–136 (2016)
MathSciNet
Article
MATH
Google Scholar
Biswas, P., Lian, T.-C., Wang, T.-C., Ye, Y.: Semidefinite programming based algorithms for sensor network localization. ACM Trans. Sens. Netw. (TOSN) 2(2), 188–220 (2006)
Article
Google Scholar
Bomze, I.M.: Copositive relaxation beats Lagrangian dual bounds in quadratically and linearly constrained quadratic optimization problems. SIAM J. Optim. 25(3), 1249–1275 (2015)
MathSciNet
Article
MATH
Google Scholar
Bomze, I.M., De Klerk, E.: Solving standard quadratic optimization problems via linear, semidefinite and copositive programming. J. Glob. Optim. 24(2), 163–185 (2002)
MathSciNet
Article
MATH
Google Scholar
Bomze, I.M., Dür, M., De Klerk, E., Roos, C., Quist, A.J., Terlaky, T.: On copositive programming and standard quadratic optimization problems. J. Glob. Optim. 18(4), 301–320 (2000)
MathSciNet
Article
MATH
Google Scholar
Bose, S., Low, S.H., Teeraratkul, T., Hassibi, B.: Equivalent relaxations of optimal power flow. IEEE Trans. Autom. Control 60(3), 729–742 (2015)
MathSciNet
Article
MATH
Google Scholar
Bundfuss, S., Dür, M.: An adaptive linear approximation algorithm for copositive programs. SIAM J. Optim. 20(1), 30–53 (2009)
MathSciNet
Article
MATH
Google Scholar
Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. 120(2), 479–495 (2009)
MathSciNet
Article
MATH
Google Scholar
Burer, S., Anstreicher, K.M.: Second-order-cone constraints for extended trust-region subproblems. SIAM J. Optim. 23(1), 432–451 (2013)
MathSciNet
Article
MATH
Google Scholar
Burer, S., Dong, H.: Representing quadratically constrained quadratic programs as generalized copositive programs. Oper. Res. Lett. 40(3), 203–206 (2012)
MathSciNet
Article
MATH
Google Scholar
Cardoso, J.-F.: Blind signal separation: statistical principles. Proc. IEEE 86(10), 2009–2025 (1998)
Article
Google Scholar
Chen, J., Burer, S.: Globally solving nonconvex quadratic programming problems via completely positive programming. Math. Program. Comput. 4(1), 33–52 (2012)
MathSciNet
Article
MATH
Google Scholar
de Klerk, E., Pasechnik, D.V.: Approximation of the stability number of a graph via copositive programming. SIAM J. Optim. 12(4), 875–892 (2002)
MathSciNet
Article
MATH
Google Scholar
de Klerk, E., Pasechnik, D.V.: A linear programming reformulation of the standard quadratic optimization problem. J. Glob. Optim. 37(1), 75–84 (2007)
MathSciNet
Article
MATH
Google Scholar
Dickinson, P.J., Povh, J.: Moment approximations for set-semidefinite polynomials. J. Optim. Theory Appl. 159(1), 57–68 (2013)
MathSciNet
Article
MATH
Google Scholar
Dong, H.: Symmetric tensor approximation hierarchies for the completely positive cone. SIAM J. Optim. 23(3), 1850–1866 (2013)
MathSciNet
Article
MATH
Google Scholar
Dukanovic, I., Rendl, F.: Copositive programming motivated bounds on the stability and the chromatic numbers. Math. Program. 121(2), 249–268 (2010)
MathSciNet
Article
MATH
Google Scholar
Ghaddar, B., Marecek, J., Mevissen, M.: Optimal power flow as a polynomial optimization problem. IEEE Trans. Power Syst. 31(1), 539–546 (2016)
Article
Google Scholar
Goemans, M.X.: Semidefinite programming in combinatorial optimization. Math. Program. 79(1–3), 143–161 (1997)
MathSciNet
MATH
Google Scholar
Hu, S., Qi, L., Zhang, G.: Computing the geometric measure of entanglement of multipartite pure states by means of non-negative tensors. Phys. Rev. A 93(1), 012304 (2016)
MathSciNet
Article
Google Scholar
Jiang, B., Yang, F., Zhang, S.: Tensor and its tucker core: the invariance relationships. (2016) arXiv preprint arXiv:1601.01469
Kim, S., Kojima, M.: Exact solutions of some nonconvex quadratic optimization problems via SDP and SOCP relaxations. Comput. Optim. Appl. 26(2), 143–154 (2003)
MathSciNet
Article
MATH
Google Scholar
Kuang, X., Ghaddar, B., Naoum-Sawaya, J., Zuluaga, L.: Alternative LP and SOCP hierarchies for ACOPF problems. IEEE Trans. Power Syst. 32, 2828–2836 (2016)
Article
Google Scholar
Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)
MathSciNet
Article
MATH
Google Scholar
Lasserre, J.B.: An explicit equivalent positive semidefinite program for nonlinear 0–1 programs. SIAM J. Optim. 12(3), 756–769 (2002a)
MathSciNet
Article
MATH
Google Scholar
Lasserre, J.B.: Semidefinite programming vs. LP relaxations for polynomial programming. Math. Oper. Res. 27(2), 347–360 (2002b)
MathSciNet
Article
MATH
Google Scholar
Lavaei, J., Low, S.H.: Zero duality gap in optimal power flow problem. IEEE Trans. Power Syst. 27(1), 92–107 (2012)
Article
Google Scholar
Ling, C., Nie, J., Qi, L., Ye, Y.: Biquadratic optimization over unit spheres and semidefinite programming relaxations. SIAM J. Optim. 20(3), 1286–1310 (2009)
MathSciNet
Article
MATH
Google Scholar
Löfberg, J.: Yalmip: A toolbox for modeling and optimization in matlab. In: IEEE International Symposium on Computer Aided Control Systems Design, pp. 284–289. IEEE (2004)
Luo, Z., Qi, L., Ye, Y.: Linear operators and positive semidefiniteness of symmetric tensor spaces. Sci. China Math. 58(1), 197–212 (2015)
MathSciNet
Article
MATH
Google Scholar
Malek, A., Hosseinipour-Mahani, N.: Solving a class of non-convex quadratic problems based on generalized KKT conditions and neurodynamic optimization technique. Kybernetika 51(5), 890–908 (2015)
MathSciNet
MATH
Google Scholar
Mariere, B., Luo, Z.-Q., Davidson, T.N.: Blind constant modulus equalization via convex optimization. IEEE Trans. Signal Process. 51(3), 805–818 (2003)
MathSciNet
Article
MATH
Google Scholar
Mavridou, T., Pardalos, P., Pitsoulis, L., Resende, M.G.: A grasp for the biquadratic assignment problem. Eur. J. Oper. Res. 105(3), 613–621 (1998)
Article
MATH
Google Scholar
Nesterov, Y.: Structure of non-negative polynomials and optimization problems. Technical report, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) (1997)
Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. Ph.D. thesis, Citeseer (2000)
Peña, J., Vera, J., Zuluaga, L.F.: Computing the stability number of a graph via linear and semidefinite programming. SIAM J. Optim. 18(1), 87–105 (2007)
MathSciNet
Article
MATH
Google Scholar
Peña, J., Vera, J.C., Zuluaga, L.F.: A certificate of non-negativity for polynomials over unbounded sets. Lehigh University (2014a)
Peña, J., Vera, J.C., Zuluaga, L.F.: Completely positive reformulations for polynomial optimization. Math. Program. 151(2), 405–431 (2014b)
MathSciNet
Article
MATH
Google Scholar
Povh, J., Rendl, F.: A copositive programming approach to graph partitioning. SIAM J. Optim. 18(1), 223–241 (2007)
MathSciNet
Article
MATH
Google Scholar
Povh, J., Rendl, F.: Copositive and semidefinite relaxations of the quadratic assignment problem. Discrete Optim. 6(3), 231–241 (2009)
MathSciNet
Article
MATH
Google Scholar
QELA, R.E.B.E., KLINZ, B.: On the biquadratic assignment problem. In: Quadratic Assignment and Related Problems: DIMACS Workshop, May 20–21, 1993, vol. 16, p. 117. American Mathematical Soc (1994)
Shor, N.: Class of global minimum bounds of polynomial functions. Cybern. Syst. Anal. 23(6), 731–734 (1987)
Article
MATH
Google Scholar
Song, Y., Qi, L.: Tensor complementarity problem and semi-positive tensors. J. Optim. Theory Appl. 169, 1–10 (2015)
MathSciNet
Google Scholar
Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)
MathSciNet
Article
MATH
Google Scholar
Ye, Y.: Approximating quadratic programming with bound and quadratic constraints. Math. Program. 84(2), 219–226 (1999)
MathSciNet
Article
MATH
Google Scholar
Zheng, X.J., Sun, X.L., Li, D.: Convex relaxations for nonconvex quadratically constrained quadratic programming: matrix cone decomposition and polyhedral approximation. Math. Program. 129(2), 301–329 (2011)
MathSciNet
Article
MATH
Google Scholar
Zuluaga, L.F., Vera, J., Peña, J.: LMI approximations for cones of positive semidefinite forms. SIAM J. Optim. 16(4), 1076–1091 (2006)
MathSciNet
Article
MATH
Google Scholar