Advertisement

Journal of Global Optimization

, Volume 70, Issue 2, pp 437–453 | Cite as

Second-order necessary efficiency conditions for nonsmooth vector equilibrium problems

  • Do Van Luu
Article

Abstract

This paper presents primal and dual second-order Fritz John necessary conditions for weak efficiency of nonsmooth vector equilibrium problems involving inequality, equality and set constraints in terms of the Páles–Zeidan second-order directional derivatives. Dual second-order Karush–Kuhn–Tucker necessary conditions for weak efficiency are established under suitable second-order constraint qualifications.

Keywords

Primal and dual second-order necessary efficiency conditions Páles–Zeidan second-order directional derivatives First and second-order tangent vectors Second-order constraint qualifications 

Mathematics Subject Classification

90C46 90C29 

Notes

Acknowledgements

The author is grateful to the referees for their valuable comments and suggestions which improve the paper. This research was supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 101.01-2017.301

References

  1. 1.
    Aghezzaf, B., Hachimi, M.: Second-order optimality conditions in multiobjective optimization problems. J. Optim. Theory Appl. 102(1), 37–50 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ben-Tal, A.: Second-order and related extremality conditions in nonlinear programming. J. Optim. Theory Appl. 31(2), 143–165 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Blum, E., Oettli, W.: From optimization and variational inequalit ies to equilibrium problems. Math. Stud. 63, 127–149 (1994)Google Scholar
  4. 4.
    Constantin, E.: Second-order necessary conditions in locally Lipschitz optimization with inequality constraints. Optim. Lett. 9, 245–261 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Constantin, E.: Higher order necessary conditions in smooth constrained optimization. Commun. Math. AMS Contemp. Math. 479, 41–49 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley Interscience, New York (1983)zbMATHGoogle Scholar
  7. 7.
    Daniele, P.: Lagrange multipliers and infinite-dimensional equilibrium problems. J. Glob. Optim. 40, 65–70 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Daniele, P.: Dynamic Networks and Evolutionary Variational Inequalities. Edward Elgar Publishing, Cheltenham (2006)zbMATHGoogle Scholar
  9. 9.
    Giannessi, F., Mastroeni, G., Pellegrini, L.: On the theory of vector optimization and variational inequalities, image space analysis and separation. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, pp. 153–215. Kluwer, Dordrecht (2000)CrossRefGoogle Scholar
  10. 10.
    Ginchev, I., Ivanov, V.I.: Second-order optimality conditions for problems with \(C^1\) data. J. Math. Anal. Appl. 340, 646–657 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gong, X.H.: Optimality conditions for efficient solution to the vector equilibrium problems with constraints. Taiwan. J. Math. 16, 1453–1473 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gong, X.H.: Optimality conditions for vector equilibrium problems. J. Math. Anal. Appl. 342, 1455–1466 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gutiérrez, C., Jiménez, B., Novo, V.: On second-order Fritz John type optimality conditions in nonsmooth multiobjective programming. Math. Program. Ser. B 123, 199–223 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ivanov, V.I.: Second-order optimality conditions for inequality constrained problems with locally Lipschitz data. Optim. Lett. 4, 597–608 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Jiménez, B., Novo, V.: Second order necessary conditions in set constrained differentiable vector optimization. Math. Methods Oper. Res. 58, 299–317 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Jiménez, B., Novo, V.: A finite dimensional extension of Lyusternik theorem with applications to multiobjective optimization. J. Math. Anal. Appl. 270, 340–356 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Luu, D.V.: Necessary and sufficient conditions for efficiency via convexificators. J. Optim. Theory Appl. 160, 510–526 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Luu, D.V.: Higher-order efficiency conditions via higher-order tangent cones. Numer. Funct. Anal. Optim. 35, 68–84 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Luu, D.V.: Higher-order necessary and sufficient conditions for strict local Pareto minima in terms of Studniarski’s derivatives. Optimization 57, 593–605 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Luu, D.V., Hang, D.D.: On optimality conditions for vector variational inequalities. J. Math. Anal. Appl. 412, 792–804 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Luu, D.V., Hang, D.D.: Efficient solutions and optimality conditions for vector equilibrium problems. Math. Methods Oper. Res. 79, 163–177 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Luu, D.V., Hang, D.D.: On efficiency conditions for nonsmooth vector equilibrium problems with equilibrium constraints. Numer. Funct. Anal. Optim. 36, 1622–1642 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ma, B.C., Gong, X.H.: Optimality conditions for vector equilibrium problems in normed spaces. Optimization 60, 1441–1455 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Morgan, J., Romaniello, M.: Scalarization and Kuhn–Tucker-like conditions for weak vector generalized quasivariational inequalities. J. Optim. Theory Appl. 130, 309–316 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Páles, Z., Zeidan, V.M.: Nonsmooth optimum problems with constraints. SIAM J. Control Optim. 32(5), 1476–1502 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Pavel, N.H., Huang, J.K., Kim, J.K.: Higher order necessary conditions for optimization. Libertas Math. 14, 41–50 (1994)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Institute of Mathematics, Vietnam Academy of Science and TechnologyThang Long UniversityHanoiVietnam

Personalised recommendations