Skip to main content
Log in

On some geometric conditions for minimality of DCH-functions via DC-duality approach

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this study, some optimality conditions for DCH-functions are given in terms of \(\varepsilon \)-faces using DC-duality approach. We introduce some geometric characterizations for the solution set of DCH-minimization problems by means of exposed faces and Minkowski difference. Moreover, we prove that given conditions are independent of the choices of representatives of DCH-functions. Also, some of these conditions are employed to find inf-stationary points for a quasidifferentiable optimization problem (QDP), i.e., the directional derivative of the objective function is a DCH-function. Therefore, we present a condition to find stationary points of a QDP. We give some examples to illustrate obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. An, L.T.H., Tao, P.D.: The DC difference of convex functions programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133, 23–46 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bazaraa, M.S., Goode, J.J., Nashed, Z.Z.: On the cones of tangents with applications to mathematical programming. J. Optim. Theory Appl. 13, 389–426 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  3. Demyanov, V.F.: Exhausters of a positively homogeneous function. Optimization 45, 13–29 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Demyanov, V.F., Dixon, L.C.W.: Quasidifferential Calculus. Optimization Software Inc., New York (1986)

    Book  MATH  Google Scholar 

  5. Demyanov, V.F., Polyakova, L.N.: Minimization of a quasi-differentiable function in a quasi-differentiable set. USSR Comput. Math. Math. Phys. 20(4), 34–43 (1980)

    Article  MATH  Google Scholar 

  6. Demyanov, V.F., Rubinov, A.M.: On quasidifferentiable functionals. Doklady of USSR Acad. Sci. 250, 21–25 (1980)

    MATH  MathSciNet  Google Scholar 

  7. Demyanov, V.F., Rubinov, A.M.: Constructive Nonsmooth Analysis. Verlag Peter Lang, Frankfurt (1995)

    MATH  Google Scholar 

  8. Grzybowski, J.: Minimal pairs of compact convex sets. Archiv der Mathematika 63, 173–181 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hiriart-Urruty, J.B.: Generalized differentiability, duality and optimization for problems dealing with differences of convex functions. In: Ponstein, J. (ed.) Convexity and Duality in Optimization, Lecture Note in Economics and Math. Systems, vol. 256, pp. 37–70. Springer, Berlin (1985)

  10. Hiriart-Urruty, J.B.: From convex optimization to non convex optimization. Part I: necessary and sufficient conditions for global optimality. In: Clarke, F.H., Demyanov, V.F., Giannessi, F. (eds.) Nonsmooth Optimization and Related Topics, Ettore Majorana International Science Series, vol. 43, pp. 219–239. Springer, Berlin (1988)

  11. Hiriart-Urruty, J.B., Lemarechal, C.: Convex Analysis and Minimization Algorithms. Parts I–II. Springer, Berlin (1993)

    MATH  Google Scholar 

  12. Hiriart-Urruty, J.B., Lemarechal, C.: Fundamentals of Convex Analysis. Springer Grundlehren Text Editions, Berlin (2001)

    Book  MATH  Google Scholar 

  13. Ioffe, A.D.: Approximate subdifferentials and and applications. I. The finite-dimensional theory. Trans. Am. Math. Soc. 281, 389–416 (1984)

    MATH  MathSciNet  Google Scholar 

  14. Ioffe, A.D.: Approximate subdifferentials and and applications. II. Mathematika 33, 111–128 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kruger, A.Y.: Subdifferentials of nonconvex functions and generalized directional derivatives [in Russian]. In: Mimcographied Notes, vol. 2661–2677, p. 39. VINITI, Moscow (1977)

  16. Kruger, A.: Generalized differentials of nonsmooth functions and necessary conditions for an extremum. Sib. Math. J. 26, 370–379 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kruger, A.Ya.: Properties of generalized differentials. Sib. Math. J. 26, 822–832 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. Martinez-Legaz, J.-E., Volle, M.: Duality in D.C. programming: the case of several D.C. constraints. J. Math. Anal. Appl. 237(2), 657–671 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mordukhovich, B.S.: Maximum principle in problems of time optimal control with nonsmooth constraints. J. Appl. Math. Mech. 40, 960–969 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mordukhovich, B.S.: Approximation Methods in Problems of Optimization and Control [in Russian]. Nauka, Moscow (1988)

    MATH  Google Scholar 

  21. Moreau, J.-J.: Fonctionelles sous-differentiables. C.R. Acad. Sci. Paris 257, 4117–4119 (1963)

    MATH  MathSciNet  Google Scholar 

  22. Pallaschke, D., Urbański, R.: Reduction of quasidifferentials and minimal representations. Math. Program. 66, 161–180 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  23. Pallaschke, D., Urbański, R.: Quasidifferentable functions and pairs of convex compact sets. Acta Math. Vietnam. 22(1), 223–243 (1997)

    MATH  MathSciNet  Google Scholar 

  24. Polyakova, L.N.: Necessary conditions for extremum of quasidifferentiable functions (in Russian). Vestnik Leningradskogo Univ. 13, 57–62 (1980)

    MATH  Google Scholar 

  25. Rockafellar, R.T.: Convex Analysis. Princeton University Press, New Jersey (1970)

    Book  MATH  Google Scholar 

  26. Shapiro, A.: On optimality conditions in quasidifferentiable optimization. Siam J. Control Optim. 22(4), 610–617 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  27. Tao, P.D., An, L.T.H.: Convex analysis approach to D.C. programming: theory, algorithms and applications. Acta Math. Vietnam. 22(1), 289–355 (1997)

    MATH  MathSciNet  Google Scholar 

  28. Tao, P.D., An, L.T.H.: Recent advances in DC programming and DCA. In: Nguyen, N.T., Le-Thi, H.A. (eds.) Transactions on Computational Intelligence XIII. Lecture Notes in Computer Science, vol. 8342, pp. 1–37. Springer, Berlin (2014)

  29. Toland, J.F.: On subdifferential calculus and duality in non-convex optimization. Mem. de la Soc. Math. de Fr. 60, 177–183 (1979)

    MATH  MathSciNet  Google Scholar 

  30. Tuy, H.: A general deterministic approach to global optimization via d.c. programming. In: Hiriart-Urruty, J.B. (ed.) Fermat Days 1985: Mathematics for Optimization, vol. 129, pp. 273–303. North-Holland Mathematics Studies, Amsterdam (1986)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didem Tozkan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Küçük, M., Tozkan, D. & Küçük, Y. On some geometric conditions for minimality of DCH-functions via DC-duality approach. J Glob Optim 69, 951–965 (2017). https://doi.org/10.1007/s10898-017-0552-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-017-0552-7

Keywords

Mathematics Subject Classification

Navigation