Skip to main content
Log in

On a class of bilevel linear mixed-integer programs in adversarial settings

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We consider a class of bilevel linear mixed-integer programs (BMIPs), where the follower’s optimization problem is a linear program. A typical assumption in the literature for BMIPs is that the follower responds to the leader optimally, i.e., the lower-level problem is solved to optimality for a given leader’s decision. However, this assumption may be violated in adversarial settings, where the follower may be willing to give up a portion of his/her optimal objective function value, and thus select a suboptimal solution, in order to inflict more damage to the leader. To handle such adversarial settings we consider a modeling approach referred to as \(\alpha \)-pessimistic BMIPs. The proposed method naturally encompasses as its special classes pessimistic BMIPs and max–min (or min–max) problems. Furthermore, we extend this new modeling approach by considering strong-weak bilevel programs, where the leader is not certain if the follower is collaborative or adversarial, and thus attempts to make a decision by taking into account both cases via a convex combination of the corresponding objective function values. We study basic properties of the proposed models and provide numerical examples with a class of the defender–attacker problems to illustrate the derived results. We also consider some related computational complexity issues, in particular, with respect to optimistic and pessimistic bilevel linear programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In the remainder of the paper we use “her” and “his” whenever we refer to the leader and the follower, respectively.

References

  1. Aboussoror, A., Loridan, P.: Strong–weak stackelberg problems in finite dimensional spaces. Serdica Math. J. 21(2), 151–170 (1995)

    MathSciNet  MATH  Google Scholar 

  2. Audet, C., Haddad, J., Savard, G.: Disjunctive cuts for continuous linear bilevel programming. Optim. Lett. 1(3), 259–267 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Audet, C., Hansen, P., Jaumard, B., Savard, G.: Links between linear bilevel and mixed 0–1 programming problems. J. Optim. Theory Appl. 93(2), 273–300 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Audet, C., Savard, G., Zghal, W.: New branch-and-cut algorithm for bilevel linear programming. J. Optim. Theory Appl. 134(2), 353–370 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bard, J.F.: Practical Bilevel Optimization: Algorithms and Applications. Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Dordrecht (1998)

    Book  MATH  Google Scholar 

  6. Bard, J.F., Plummer, J., Sourie, J.C.: A bilevel programming approach to determining tax credits for biofuel production. Eur. J. Oper. Res. 120(1), 30–46 (2000)

    Article  MATH  Google Scholar 

  7. Bayrak, H., Bailey, M.D.: Shortest path network interdiction with asymmetric information. Networks 52(3), 133–140 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brown, G., Carlyle, M., Salmeron, J., Wood, K.: Defending critical infrastructure. Interfaces 36(6), 530–544 (2006)

    Article  Google Scholar 

  9. Burgard, A.P., Pharkya, P., Maranas, C.D.: Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84(6), 647–657 (2003)

    Article  Google Scholar 

  10. Cao, D., Leung, L.C.: A partial cooperation model for non-unique linear two-level decision problems. Eur. J. Oper. Res. 140(1), 134–141 (2002)

    Article  MATH  Google Scholar 

  11. Caramia, M., Mari, R.: Enhanced exact algorithms for discrete bilevel linear problems. Optim. Lett. 9(7), 1447–1468 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chiou, S.-W.: Bilevel programming for the continuous transport network design problem. Transp. Res. B 39(4), 361–383 (2005)

    Article  Google Scholar 

  13. Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Ann. Oper. Res. 153(1), 235–256 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Côté, J.-P., Savard, G.: A bilevel modelling approach to pricing and fare optimization in the airline industry. J. Revenue Pricing Manag. 2(1), 23–26 (2003)

    Article  Google Scholar 

  15. Dempe, S.: Foundations of Bilevel Programming. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  16. Dempe, S., Mordukhovich, B.S., Zemkoho, A.B.: Sensitivity analysis for two-level value functions with applications to bilevel programming. SIAM J. Optim. 22(4), 1309–1343 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. DeNegre, S., and Ralphs, T.K.: A branch-and-cut algorithm for bilevel integer programming. In: Proceedings of the Eleventh INFORMS Computing Society Meeting, pp. 65–78 (2009)

  18. Deng, X.: Complexity issues in bilevel linear programming. In: Multilevel Optimization: Algorithms and Applications, pp. 149–164. Springer, Berlin (1998)

  19. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  20. Gzara, F.: A cutting plane approach for bilevel hazardous material transport network design. Oper. Res. Lett. 41(1), 40–46 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hansen, P., Jaumard, B., Savard, G.: New branch-and-bound rules for linear bilevel programming. SIAM J. Sci. Stat. Comput. 13(5), 1194–1217 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Horst, R., Pardalos, P.M.: Handbook of Global Optimization. Kluwer Academic Publishers, Dordrecht (1994)

    MATH  Google Scholar 

  23. IBM ILOG CPLEX. http://www-01.ibm.com/software/info/ilog/ (2016). Accessed on 7 Jan 2016

  24. Israeli, E., Wood, R.: Shortest-path network interdiction. Networks 40(2), 97–111 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mallozzi, L., Morgan, J.: \(\varepsilon \)-mixed strategies for static continuous-kernel Stackelberg games. J. Optim. Theory Appl. 78(2), 303–316 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Migdalas, A.: Bilevel programming in traffic planning: models, methods and challenge. J. Global Optim. 7(4), 381–405 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Migdalas, A., Pardalos, P.M., Värbrand, P.: Multilevel Optimization: Algorithms and Applications. Kluwer Academic Publishers, Norwell (1998)

    Book  MATH  Google Scholar 

  28. Patriksson, M., Rockafellar, R.T.: A mathematical model and descent algorithm for bilevel traffic management. Transp. Sci. 36(3), 271–291 (2002)

    Article  MATH  Google Scholar 

  29. Ren, S., Zeng, B., Qian, X.: Adaptive bilevel programming for optimal gene knockouts for targeted overproduction under phenotypic constraints. BMC Bioinform. 14(Suppl 2), S17 (2013)

    Article  Google Scholar 

  30. Shen, S., Smith, J.C., Goli, R.: Exact interdiction models and algorithms for disconnecting networks via node deletions. Discrete Optim. 9(3), 172–188 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Stackelberg, H.: The Theory of Market Economy. Oxford University Press, Oxford (1952)

    Google Scholar 

  32. Steeger, G., Barroso, L.A., Rebennack, S.: Optimal bidding strategies for hydro-electric producers: a literature survey. IEEE Trans. Power Syst. 29(4), 1758–1766 (2014)

    Article  Google Scholar 

  33. Steeger, G., Rebennack, S.: Strategic bidding for multiple price-maker hydroelectric producers. IIE Trans. 47(9), 1013–1031 (2015)

    Article  Google Scholar 

  34. Tang, Y., Richard, J.-P.P., Smith, J.C.: A class of algorithms for mixed-integer bilevel min-max optimization. J. Glob. Optim. 66(2), 225–262 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vazirani, V.: Approximation Algorithms. Springer, Berlin (2013)

    Google Scholar 

  36. Wood, R.: Deterministic network interdiction. Math. Comput. Model. 17(2), 1–18 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xin, C., Qingge, L., Wang, J., Zhu, B.: Robust optimization for the hazardous materials transportation network design problem. J. Comb. Optim. 30(2), 320–334 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zeng, B.: Easier than we thought—a practical scheme to compute pessimistic bilevel optimization problem. SSRN: http://ssrn.com/abstract=2658342. (2015). 9 Aug 2015

  39. Zheng, Y., Wan, Z., Jia, S., Wang, G.: A new method for strong-weak linear bilevel programming problem. J. Ind. Manag. Optim. 11(2), 529–547 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This material is based upon work partially supported by the National Science Foundation [Grants CMMI-1400009 and CMMI-1634835], DoD DURIP Grant FA2386-12-1-3032, the Air Force Research Laboratory (AFRL) Mathematical Modeling and Optimization Institute and the Air Force Office of Scientific Research (AFOSR). The authors thank two anonymous referees and the Associate Editor for their constructive and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg A. Prokopyev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, M.H., Özaltın, O.Y. & Prokopyev, O.A. On a class of bilevel linear mixed-integer programs in adversarial settings. J Glob Optim 71, 91–113 (2018). https://doi.org/10.1007/s10898-017-0549-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-017-0549-2

Keywords

Navigation