Journal of Global Optimization

, Volume 69, Issue 4, pp 761–796 | Cite as

Deterministic global optimization of process flowsheets in a reduced space using McCormick relaxations

  • Dominik Bongartz
  • Alexander MitsosEmail author


Deterministic global methods for flowsheet optimization have almost exclusively relied on an equation-oriented formulation where all model variables are controlled by the optimizer and all model equations are considered as equality constraints, which results in very large optimization problems. A possible alternative is a reduced-space formulation similar to the sequential modular infeasible path method employed in local flowsheet optimization. This approach exploits the structure of the model equations to achieve a reduction in problem size. The optimizer only operates on a small subset of the model variables and handles only few equality constraints, while the majority is hidden in externally defined functions from which function values and relaxations for the objective function and constraints can be queried. Tight relaxations and their subgradients for these external functions can be provided through the automatic propagation of McCormick relaxations. Three steam power cycles of increasing complexity are used as case studies to evaluate the different formulations. Unlike in local optimization or in previous sequential approaches relying on interval methods, the solution of the reduced-space formulation using McCormick relaxations enables dramatic reductions in computational time compared to the conventional equation-oriented formulation. Despite the simplicity of the implemented branch-and-bound solver that does not fully exploit the tight relaxations returned by the external functions but relies on further affine relaxation at a single point using the subgradients, in some cases it can solve the reduced-space formulation significantly faster without any range reduction than the state-of-the-art solver BARON can solve the equation-oriented formulation.


Global optimization Process design Sequential modular Branch-and-bound Relaxation of algorithms 



This work received funding through the “Competence Center Power to Fuel” of RWTH Aachen University and project “Power to Fuel” of JARA Energy, both of which are funded by the Excellence Initiative by the German federal and state governments to promote science and research at German universities, as well as from the German Federal Ministry of Education and Research (BMBF) under grant number 03SFK2A. The responsibility for the content lies with the authors. The authors would also like to thank Jaromił Najman, Hatim Djelassi, and Wolfgang Huster for helpful discussions.

Supplementary material

Open image in new window Open image in new window
10898_2017_547_MOESM1_ESM.txt (3 kb)
Supplementary material 1 (txt 3 KB)
10898_2017_547_MOESM2_ESM.txt (12 kb)
Supplementary material 2 (txt 12 KB)
10898_2017_547_MOESM3_ESM.txt (7 kb)
Supplementary material 3 (txt 7 KB)
10898_2017_547_MOESM4_ESM.txt (9 kb)
Supplementary material 4 (txt 8 KB)
10898_2017_547_MOESM5_ESM.txt (5 kb)
Supplementary material 5 (txt 5 KB)
10898_2017_547_MOESM6_ESM.txt (14 kb)
Supplementary material 6 (txt 13 KB)
10898_2017_547_MOESM7_ESM.txt (7 kb)
Supplementary material 7 (txt 7 KB)
10898_2017_547_MOESM8_ESM.txt (16 kb)
Supplementary material 8 (txt 16 KB)
10898_2017_547_MOESM9_ESM.txt (8 kb)
Supplementary material 9 (txt 7 KB)
10898_2017_547_MOESM10_ESM.txt (5 kb)
Supplementary material 10 (txt 4 KB)
10898_2017_547_MOESM11_ESM.txt (4 kb)
Supplementary material 11 (txt 4 KB)
10898_2017_547_MOESM12_ESM.txt (9 kb)
Supplementary material 12 (txt 9 KB)
10898_2017_547_MOESM13_ESM.txt (6 kb)
Supplementary material 13 (txt 6 KB)
10898_2017_547_MOESM14_ESM.txt (7 kb)
Supplementary material 14 (txt 6 KB)
10898_2017_547_MOESM15_ESM.txt (3 kb)
Supplementary material 15 (txt 2 KB)
10898_2017_547_MOESM16_ESM.txt (3 kb)
Supplementary material 16 (txt 2 KB)
10898_2017_547_MOESM17_ESM.txt (5 kb)
Supplementary material 17 (txt 5 KB)
10898_2017_547_MOESM18_ESM.txt (4 kb)
Supplementary material 18 (txt 4 KB)
10898_2017_547_MOESM19_ESM.txt (5 kb)
Supplementary material 19 (txt 5 KB)
10898_2017_547_MOESM20_ESM.txt (5 kb)
Supplementary material 20 (txt 5 KB)
10898_2017_547_MOESM21_ESM.txt (29 kb)
Supplementary material 21 (txt 29 KB)
10898_2017_547_MOESM22_ESM.txt (19 kb)
Supplementary material 22 (txt 19 KB)
10898_2017_547_MOESM23_ESM.txt (22 kb)
Supplementary material 23 (txt 22 KB)
10898_2017_547_MOESM24_ESM.txt (13 kb)
Supplementary material 24 (txt 13 KB)
10898_2017_547_MOESM25_ESM.txt (17 kb)
Supplementary material 25 (txt 17 KB)
10898_2017_547_MOESM26_ESM.txt (20 kb)
Supplementary material 26 (txt 19 KB)
10898_2017_547_MOESM27_ESM.txt (13 kb)
Supplementary material 27 (txt 12 KB)
10898_2017_547_MOESM28_ESM.txt (10 kb)
Supplementary material 28 (txt 10 KB)


  1. 1.
    Adjiman, C.S., Androulakis, I.P., Maranas, C.D., Floudas, C.A.: A global optimization method, \(\alpha \)BB, for process design. Comput. Chem. Eng. 20, S419–S424 (1996)CrossRefGoogle Scholar
  2. 2.
    Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A global optimization method, \(\alpha \)BB, for general twice-differentiable constrained NLPs-I. Theor. Adv. Comput. Chem. Eng. 22(9), 1137–1158 (1998)CrossRefGoogle Scholar
  3. 3.
    Ahadi-Oskui, T., Vigerske, S., Nowak, I., Tsatsaronis, G.: Optimizing the design of complex energy conversion systems by branch and cut. Comput. Chem. Eng. 34(8), 1226–1236 (2010)CrossRefGoogle Scholar
  4. 4.
    Ahmetović, E., Grossmann, I.E.: Global superstructure optimization for the design of integrated process water networks. AIChE J. 57(2), 434–457 (2011)CrossRefGoogle Scholar
  5. 5.
    Androulakis, I.P., Maranas, C.D., Floudas, C.A.: A global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7(4), 337–363 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Balendra, S., Bogle, I.D.L.: A comparison of flowsheet solving strategies using interval global optimisation methods. In: Kraslawski, A., Turunen, I. (eds.) European symposium on computer aided process engineering, vol. 13, pp. 23–28. Elsevier Science B.V., Amsterdam (2003)Google Scholar
  7. 7.
    Balendra, S., Bogle, I.D.L.: Modular global optimisation in chemical engineering. J. Glob. Optim. 45(1), 169–185 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Baliban, R.C., Elia, J.A., Misener, R., Floudas, C.A.: Global optimization of a MINLP process synthesis model for thermochemical based conversion of hybrid coal, biomass, and natural gas to liquid fuels. Comput. Chem. Eng. 42, 64–86 (2012)CrossRefGoogle Scholar
  9. 9.
    Bendtsen, C., Stauning, O.: FADBAD++, a flexible C++ package for automatic differentiation. Version 2.1. (2012). Accessed 18 October 2016
  10. 10.
    Biegler, L.T.: Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes. MOS-SIAM, Philadelphia (2010)CrossRefzbMATHGoogle Scholar
  11. 11.
    Biegler, L.T., Grossmann, I.E., Westerberg, A.W.: Systematic Methods of Chemical Process Design. Prentice Hall PTR, Upper Saddle River (1997)Google Scholar
  12. 12.
    Biegler, L.T., Hughes, R.R.: Infeasible path optimization with sequential modular simulators. AIChE J. 28(6), 994–1002 (1982)CrossRefGoogle Scholar
  13. 13.
    Bogle, I.D.L., Byrne, R.P.: Global optimisation of chemical process flowsheets. In: Dzemyda, G., Saltenis, V., Zilinskas, A. (eds.) Stochastic and Global Optimization, pp. 33–48. Springer, Dordrecht (2002)CrossRefGoogle Scholar
  14. 14.
    Bompadre, A., Mitsos, A.: Convergence rate of McCormick relaxations. J. Glob. Optim. 52(1), 1–28 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Bongartz, D., Mitsos, A.: Infeasible path global flowsheet optimization using McCormick relaxations. In: Espuña, A., Graells, M., Puigjaner, L. (eds.) Proceedings of the 27th European Symposium on Computer Aided Process Engineering - ESCAPE 27, in press (2017)Google Scholar
  16. 16.
    Bracco, S., Siri, S.: Exergetic optimization of single level combined gas-steam power plants considering different objective functions. Energy 35(12), 5365–5373 (2010)CrossRefGoogle Scholar
  17. 17.
    Byrd, R.H., Nocedal, J., Waltz, R.A.: KNITRO: an integrated package for nonlinear optimization. In: Di Pillo, G., Roma, M. (eds.) Large-Scale Nonlinear Optimization, pp. 35–59. Springer, Berlin (2006)Google Scholar
  18. 18.
    Byrne, R.P., Bogle, I.D.L.: Global optimisation of constrained non-convex programs using reformulation and interval analysis. Comput. Chem. Eng. 23(9), 1341–1350 (1999)CrossRefGoogle Scholar
  19. 19.
    Byrne, R.P., Bogle, I.D.L.: Global optimization of modular process flowsheets. Ind. Eng. Chem. Res. 39(11), 4296–4301 (2000)CrossRefGoogle Scholar
  20. 20.
    Chachuat, B.: MC++ (version 2.0): Toolkit for Construction, Manipulation and Bounding of Factorable Functions. (2014). Accessed 18 October 2016
  21. 21.
    Chen, J.J.J.: Comments on improvements on a replacement for the logarithmic mean. Chem. Eng. Sci. 42(10), 2488–2489 (1987)CrossRefGoogle Scholar
  22. 22.
    Diwekar, U.M., Grossmann, I.E., Rubin, E.S.: An MINLP process synthesizer for a sequential modular simulator. Ind. Eng. Chem. Res. 31(1), 313–322 (1992)CrossRefGoogle Scholar
  23. 23.
    Drud, A.S.: CONOPT–a large-scale GRG code. ORSA J. Comput. 6(2), 207–216 (1994)CrossRefzbMATHGoogle Scholar
  24. 24.
    Edgar, T.F., Himmelblau, D.M., Lasdon, L.: Optimization of Chemical Processes. McGraw-Hill, New York (2001)Google Scholar
  25. 25.
    Epperly, T.G.W., Pistikopoulos, E.N.: A reduced space branch and bound algorithm for global optimization. J. Glob. Optim. 11(3), 287–311 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Falk, J.E., Soland, R.M.: An algorithm for separable nonconvex programming problems. Manag. Sci. 15(9), 550–569 (1969)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    GAMS Development Corporation: General Algebraic Modeling System (GAMS) Release 24.8.4. Washington, DC (2016)Google Scholar
  28. 28.
    Gunasekaran, S., Mancini, N.D., Mitsos, A.: Optimal design and operation of membrane-based oxy-combustion power plants. Energy 70, 338–354 (2014)CrossRefGoogle Scholar
  29. 29.
    Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, 3rd edn. Springer, Berlin (1996)CrossRefzbMATHGoogle Scholar
  30. 30.
    International Business Machines Corporation: IBM ILOG CPLEX v12.5. Armonk, NY (2009)Google Scholar
  31. 31.
    Johnson, S.G.: The NLopt nonlinear-optimization package. Accessed 18 October 2016
  32. 32.
    Jüdes, M., Tsatsaronis, G.: Design optimization of power plants by considering multiple partial load operation points. In: Proceedings of IMECE2007. ASME International Mechanical Engineering Congress and Exposition. November 11–15, 2007, Seattle, WA, pp. 217–225 (2007)Google Scholar
  33. 33.
    Kehlhofer, R., Hannemann, F., Stirnimann, F., Rukes, B.: Combined-Cycle Gas & Steam Turbine Power Plants, 3rd edn. PennWell Corporation, Tulsa (2009)Google Scholar
  34. 34.
    Khan, K.A., Watson, H.A., Barton, P.I.: Differentiable McCormick relaxations. J. Glob. Optim. 67(4), 687–729 (2017)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Kocis, G.R., Grossmann, I.E.: Global optimization of nonconvex mixed-integer nonlinear programming (MINLP) problems in process synthesis. Ind. Eng. Chem. Res. 27(8), 1407–1421 (1988)CrossRefGoogle Scholar
  36. 36.
    Kraft, D.: A software package for sequential quadratic programming. Tech. Rep. DFVLR-FB 88-28, Institut für Dynamik der Flugsysteme, Oberpfaffenhofen (1988)Google Scholar
  37. 37.
    Kraft, D.: Algorithm 733: TOMP-Fortran modules for optimal control calculations. ACM T. Math. Softw. 20(3), 262–281 (1994)CrossRefzbMATHGoogle Scholar
  38. 38.
    Locatelli, M., Schoen, F.: Global Optimization: Theory, Algorithms, and Applications, vol. 15. MOS-SIAM, Philadelphia (2013)CrossRefzbMATHGoogle Scholar
  39. 39.
    Manassaldi, J.I., Arias, A.M., Scenna, N.J., Mussati, M.C., Mussati, S.F.: A discrete and continuous mathematical model for the optimal synthesis and design of dual pressure heat recovery steam generators coupled to two steam turbines. Energy 103, 807–823 (2016)CrossRefGoogle Scholar
  40. 40.
    McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part I–convex underestimating problems. Math. Program. 10, 147–175 (1976)CrossRefzbMATHGoogle Scholar
  41. 41.
    Misener, R., Floudas, C.A.: ANTIGONE: algorithms for continuous/integer global optimization of nonlinear equations. J. Glob. Optim. 59, 503–526 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Mistry, M., Misener, R.: Optimising heat exchanger network synthesis using convexity properties of the logarithmic mean temperature difference. Comput. Chem. Eng. 94, 1–17 (2016)CrossRefGoogle Scholar
  43. 43.
    Mitsos, A., Chachuat, B., Barton, P.I.: McCormick-based relaxations of algorithms. SIAM J. Optim. 20(2), 573–601 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Najman, J., Mitsos, A.: Convergence analysis of multivariate McCormick relaxations. J. Glob. Optim. 66, 597–628 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Najman, J., Mitsos, A.: Convergence order of McCormick relaxations of LMTD function in heat exchanger networks. In: Kravanja, Z. (ed.) Proceedings of the 26th European Symposium on Computer Aided Process Engineering, pp. 1605–1610 (2016)Google Scholar
  46. 46.
    Quesada, I., Grossmann, I.E.: Global optimization algorithm for heat exchanger networks. Ind. Eng. Chem. Res. 32(3), 487–499 (1993)CrossRefGoogle Scholar
  47. 47.
    Reneaume, J.M.F., Koehret, B.M., Joulia, X.L.: Optimal process synthesis in a modular simulator environment: new formulation of the mixed-integer nonlinear programming problem. Ind. Eng. Chem. Res. 34(12), 4378–4394 (1995)CrossRefGoogle Scholar
  48. 48.
    Ryoo, H.S., Sahinidis, N.V.: Global optimization of nonconvex NLPs and MINLPs with applications in process design. Comput. Chem. Eng. 19(5), 551–566 (1995)CrossRefGoogle Scholar
  49. 49.
    Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Glob. Optim. 8(2), 107–138 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    Scott, J.K., Stuber, M.D., Barton, P.I.: Generalized McCormick relaxations. J. Glob. Optim. 51, 569–606 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  51. 51.
    Silveira, J.L., Tuna, C.E.: Thermoeconomic analysis method for optimization of combined heat and power systems. Part I. Prog. Energ. Combust. 29(6), 479–485 (2003)CrossRefGoogle Scholar
  52. 52.
    Smith, E.M.B., Pantelides, C.C.: Global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 21, S791–S796 (1997)CrossRefGoogle Scholar
  53. 53.
    Smith, E.M.B., Pantelides, C.C.: A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 23(4), 457–478 (1999)CrossRefGoogle Scholar
  54. 54.
    Stuber, M.D., Scott, J.K., Barton, P.I.: Convex and concave relaxations of implicit functions. Optim. Method. Softw. 30, 424–460 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  55. 55.
    Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Progam. 99(3), 563–591 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  56. 56.
    Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  57. 57.
    Tsoukalas, A., Mitsos, A.: Multivariate McCormick relaxations. J. Glob. Optim. 59, 633–662 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  58. 58.
    Turton, R., Bailie, R.C., Whiting, W.B.: Analysis, Synthesis and Design of Chemical Processes, 4th edn. Prentice Hall PTR, Upper Saddle River (2012)Google Scholar
  59. 59.
    U.S. Energy Information Administration: United States Natural Gas Industrial Price. Accessed 6 September 2016
  60. 60.
    Valdés, M., Duran, M.D., Rovira, A.: Thermoeconomic optimization of combined cycle gas turbine power plants using genetic algorithms. Appl. Therm. Eng. 23(17), 2169–2182 (2003)CrossRefGoogle Scholar
  61. 61.
    Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  62. 62.
    Wechsung, A., Barton, P.I.: Global optimization of bounded factorable functions with discontinuities. J. Glob. Optim. 58(1), 1–30 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  63. 63.
    Wechsung, A., Scott, J.K., Watson, H.A., Barton, P.I.: Reverse propagation of McCormick relaxations. J. Glob. Optim. 63(1), 1–36 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  64. 64.
    Zamora, J.M., Grossmann, I.E.: Continuous global optimization of structured process systems models. Comput. Chem. Eng. 22(12), 1749–1770 (1998)CrossRefGoogle Scholar
  65. 65.
    Zebian, H., Mitsos, A.: A double-pinch criterion for regenerative Rankine cycles. Energy 40(1), 258–270 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Process Systems Engineering (AVT.SVT)RWTH Aachen UniversityAachenGermany

Personalised recommendations