Skip to main content
Log in

Smoothing partial exact penalty splitting method for mathematical programs with equilibrium constraints

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Mathematical program with equilibrium constraints (MPEC) is an important problem in mathematical programming as it arises frequently in a broad spectrum of fields. In this paper, we propose an implementable smoothing partial exact penalty method to solve MPEC, where the subproblems are solved inexactly by the proximal alternating linearized minimization method. Under the extend MPEC-NNAMCQ, the proposed method is shown to be convergent to an M-stationary point of the MPEC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146, 459–494 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, C.H., Yuan, X.M., Zeng, S.Z., Zhang, J.: Splitting methods based on partial penalty for mathematical program with equilibrium constraints, Technical note (2017)

  3. Clarke, F.H.: Optimization and Nonsmooth Analysis, Wiley Interscience, New York, 1983; reprinted as vol. 5 of Classics Appl. Math. 5, SIAM, Philadelphia, PA (1990)

  4. Facchinei, F., Jiang, H., Qi, L.: A smoothing method for mathematical programs with equilibrium constraints. Math. Program. 85, 107–134 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Flegel, M.L., Kanzow, C.: On the Guignard constraint qualification for mathematical programs with equilibrium constraints. Optimization 54, 517–534 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hu, X., Ralph, D.: Convergence of a penalty method for mathematical programming with equilibrium constraints. J. Optim. Theory Appl. 123, 365–390 (2004)

    Article  MathSciNet  Google Scholar 

  7. Ioffe, A.D.: An invitation to Tame optimization. SIAM J. Optim. 19, 1894–1917 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jiang, H., Ralph, D.: Smooth SQP methods for mathematical programs with nonlinear complementarity constraints. SIAM J. Optim. 10, 779–808 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lin, G.H., Fukushima, M.: A modified relaxation scheme for mathematical programs with complementarity constraints. Ann. Oper. Res. 133, 918–936 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Lin, G.H., Fukushima, M.: Hybrid approach with active set identification for mathematical programs with complementarity constraints. J. Optim. Theory Appl. 128, 1–28 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, G., Ye, J., Zhu, J.: Partial exact penalty for mathematical programs with equilibrium constraints. Set-Valued Anal. 16, 785–804 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Luo, Z.Q., Pang, J.S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  13. Moore, G., Bergeron, C., Bennett, K.P.: Model selection for primal SVM. Mach. Learn. 85, 175–208 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory. Series of Comprehensive Studies in Mathematics, vol. 330. Springer, Berlin (2006)

    Google Scholar 

  15. Outrata, J.V.: Optimality conditions for a class of mathematical programs with equilibrium constraints. SIAM J. Control Optim. 38, 1623–1638 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Outrata, J.V., Koćvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Nonconvex Optimization and Its Applications, vol. 28. Kluwer Academic Publishers, Dordrechet (1998)

    Book  MATH  Google Scholar 

  17. Rochafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  Google Scholar 

  18. Scheel, H.S., Scholtes, S.: Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 25, 1–22 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Scholtes, S., Sttohr, M.: Exact penalization of mathematical programs with equilibrium constraints. SIAM J. Control Optim. 37, 617–652 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ye, J.J.: Constraint qualifications and necessary optimality conditions for optimization problems with variational inequality constraints. SIAM J. Optim. 10, 943–962 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ye, J.J.: Necessary and sufficient conditions for mathematical programs with equilibrium constraints. J. Math. Anal. Appl. 307, 350–369 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ye, J.J.: Optimimality conditions for optimization problems with complementarity constraints. SIAM J. Optim. 9, 374–387 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ye, J.J., Ye, X.Y.: Necessary optimality conditions for optimization problems with variational inequality constraints. Math. Oper. Res. 22, 977–997 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ye, J.J., Zhu, D.L., Zhu, Q.J.: Exact penalization and necessary optimality conditions for generalized bilevel programming problems. SIAM J. Optim. 7, 481–507 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to three anonymous referees for their helpful comments and suggestions, which have led to much improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guihua Lin.

Additional information

This work was supported in part by NSFC (Nos. 11401300, 11431004, 11671250, 11601458) and Humanity and Social Science Foundation of Ministry of Education of China (No. 15YJA630034).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Zhang, J., Chen, C. et al. Smoothing partial exact penalty splitting method for mathematical programs with equilibrium constraints. J Glob Optim 70, 223–236 (2018). https://doi.org/10.1007/s10898-017-0539-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-017-0539-4

Keywords

Mathematics Subject Classification

Navigation