Convergence-order analysis of branch-and-bound algorithms for constrained problems

Article

Abstract

The performance of branch-and-bound algorithms for deterministic global optimization is strongly dependent on the ability to construct tight and rapidly convergent schemes of lower bounds. One metric of the efficiency of a branch-and-bound algorithm is the convergence order of its bounding scheme. This article develops a notion of convergence order for lower bounding schemes for constrained problems, and defines the convergence order of convex relaxation-based and Lagrangian dual-based lower bounding schemes. It is shown that full-space convex relaxation-based lower bounding schemes can achieve first-order convergence under mild assumptions. Furthermore, such schemes can achieve second-order convergence at KKT points, at Slater points, and at infeasible points when second-order pointwise convergent schemes of relaxations are used. Lagrangian dual-based full-space lower bounding schemes are shown to have at least as high a convergence order as convex relaxation-based full-space lower bounding schemes. Additionally, it is shown that Lagrangian dual-based full-space lower bounding schemes achieve first-order convergence even when the dual problem is not solved to optimality. The convergence order of some widely-applicable reduced-space lower bounding schemes is also analyzed, and it is shown that such schemes can achieve first-order convergence under suitable assumptions. Furthermore, such schemes can achieve second-order convergence at KKT points, at unconstrained points in the reduced-space, and at infeasible points under suitable assumptions when the problem exhibits a specific separable structure. The importance of constraint propagation techniques in boosting the convergence order of reduced-space lower bounding schemes (and helping mitigate clustering in the process) for problems which do not possess such a structure is demonstrated.

Keywords

Global optimization Constrained optimization Convergence order Convex relaxation Lagrangian dual Branch-and-bound Lower bounding scheme Reduced-space 

Mathematics Subject Classification

49M20 49M29 49M37 49N15 65K05 68Q25 90C26 

References

  1. 1.
    Adjiman, C.S., Floudas, C.A.: Rigorous convex underestimators for general twice-differentiable problems. J. Glob. Optim. 9(1), 23–40 (1996)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24(4–5), 597–634 (2009)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ben-Tal, A., Eiger, G., Gershovitz, V.: Global minimization by reducing the duality gap. Math. Program. 63(1–3), 193–212 (1994)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. Society for Industrial and Applied Mathematics (2001). doi:10.1137/1.9780898718829 MATHGoogle Scholar
  5. 5.
    Bompadre, A., Mitsos, A.: Convergence rate of McCormick relaxations. J. Glob. Optim. 52(1), 1–28 (2012)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bompadre, A., Mitsos, A., Chachuat, B.: Convergence analysis of Taylor models and McCormick-Taylor models. J. Glob. Optim. 57(1), 75–114 (2013)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Du, K., Kearfott, R.B.: The cluster problem in multivariate global optimization. J. Glob. Optim. 5(3), 253–265 (1994)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Dür, M.: Dual bounding procedures lead to convergent Branch-and-Bound algorithms. Math. Program. 91(1), 117–125 (2001)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Dür, M., Horst, R.: Lagrange duality and partitioning techniques in nonconvex global optimization. J. Optim. Theory Appl. 95(2), 347–369 (1997)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Epperly, T.G.W., Pistikopoulos, E.N.: A reduced space branch and bound algorithm for global optimization. J. Glob. Optim. 11(3), 287–311 (1997)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Floudas, C.A., Gounaris, C.E.: A review of recent advances in global optimization. J. Glob. Optim. 45(1), 3–38 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.1. http://cvxr.com/cvx (2014)
  13. 13.
    Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, 3rd edn. Springer, Berlin (1996)CrossRefMATHGoogle Scholar
  14. 14.
    Hunter, J.K.: An Introduction to Real Analysis. University of California at Davis, Department of Mathematics (2014)Google Scholar
  15. 15.
    Kannan, R., Barton, P.I.: The cluster problem in constrained global optimization. J. Glob. Optim. (2017). doi:10.1007/s10898-017-0531-z Google Scholar
  16. 16.
    Khan, K.A.: Sensitivity analysis for nonsmooth dynamic systems. Ph.D. thesis, Massachusetts Institute of Technology (2015)Google Scholar
  17. 17.
    Khan, K.A., Watson, H.A.J., Barton, P.I.: Differentiable McCormick relaxations. J. Glob. Optim. 67(4), 687–729 (2017)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Krawczyk, R., Nickel, K.: Die zentrische form in der Intervallarithmetik, ihre quadratische Konvergenz und ihre Inklusionsisotonie. Computing 28(2), 117–137 (1982)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Liberti, L., Pantelides, C.C.: Convex envelopes of monomials of odd degree. J. Glob. Optim. 25(2), 157–168 (2003)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I: convex underestimating problems. Math. Program. 10(1), 147–175 (1976)CrossRefMATHGoogle Scholar
  21. 21.
    Misener, R., Floudas, C.A.: ANTIGONE: Algorithms for Continuous/Integer Global Optimization of Nonlinear Equations. J. Glob. Optim. 59(2–3), 503–526 (2014)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. Society for Industrial and Applied Mathematics, Philadelphia (2009)CrossRefMATHGoogle Scholar
  23. 23.
    Najman, J., Mitsos, A.: Convergence analysis of multivariate McCormick relaxations. J. Glob. Optim. 66(4), 597–628 (2016)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Ratschek, H., Rokne, J.: Computer methods for the range of functions. Mathematics and its Applications, Ellis Horwood Ltd (1984)MATHGoogle Scholar
  25. 25.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)CrossRefMATHGoogle Scholar
  26. 26.
    Rote, G.: The convergence rate of the sandwich algorithm for approximating convex functions. Computing 48(3–4), 337–361 (1992)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Sahlodin, A.M., Chachuat, B.: Convex/concave relaxations of parametric ODEs using Taylor models. Comput. Chem. Eng. 35(5), 844–857 (2011)CrossRefMATHGoogle Scholar
  28. 28.
    Schechter, M.: Principles of Functional Analysis, vol. 36, 2nd edn. American Mathematical Society (2001)Google Scholar
  29. 29.
    Schöbel, A., Scholz, D.: The theoretical and empirical rate of convergence for geometric branch-and-bound methods. J. Glob. Optim. 48(3), 473–495 (2010)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Scholz, D.: Theoretical rate of convergence for interval inclusion functions. J. Glob. Optim. 53(4), 749–767 (2012)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Sopasakis, P., Giraudo, D.: Basic properties of the point-to-set distance function. Mathematics Stack Exchange. http://math.stackexchange.com/questions/107478/basic-properties-of-the-point-to-set-distance-function (Version: 2012-02-10. Accessed 24 May 2017)
  32. 32.
    Stuber, M.D., Scott, J.K., Barton, P.I.: Convex and concave relaxations of implicit functions. Optim. Methods Softw. 30(3), 1–37 (2015)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Tawarmalani, M., Sahinidis, N.V.: Convex extensions and envelopes of lower semi-continuous functions. Math. Program. 93(2), 247–263 (2002)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99(3), 563–591 (2004)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Tsoukalas, A., Mitsos, A.: Multivariate McCormick relaxations. J. Glob. Optim. 59(2–3), 633–662 (2014)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Wechsung, A.: Global optimization in reduced space. Ph.D. thesis, Massachusetts Institute of Technology (2014)Google Scholar
  38. 38.
    Wechsung, A., Schaber, S.D., Barton, P.I.: The cluster problem revisited. J. Glob. Optim. 58(3), 429–438 (2014)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Process Systems Engineering Laboratory, Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations