Skip to main content
Log in

A theorem of the alternative with an arbitrary number of inequalities and quadratic programming

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper we are concerned with a Gordan-type theorem involving an arbitrary number of inequality functions. We not only state its validity under a weak convexity assumption on the functions, but also show it is an optimal result. We discuss generalizations of several recent results on nonlinear quadratic optimization, as well as a formula for the Fenchel conjugate of the supremum of a family of functions, in order to illustrate the applicability of that theorem of the alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bapat, R.B., Raghavan, T.E.S.: Nonnegative Matrices and Applications. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  2. Boţ, R.I.: Conjugate Duality in Convex Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 637. Springer, Berlin (2010)

    MATH  Google Scholar 

  3. Brickman, L.: On the field of values of a matrix. Proc. Am. Math. Soc. 12, 61–66 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carvajal, A., Weretka, M.: No-arbitrage, state prices and trade in thin financial markets. Econ. Theor. 50, 223–268 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, X., Xiang, S.: Newton iterations in implicit time-stepping scheme for differential linear complementarity systems. Math. Program. 138, 579–606 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chuong, T.D.: L-invex-infine functions and applications. Nonlinear Anal. 75, 5044–5052 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dax, A., Sreedharan, V.P.: Theorems of the alternative and duality. J. Optim. Theory Appl. 94, 561–590 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. De Martino, D.: Thermodynamics of biochemical networks and duality theorems. Phys. Rev. E 87, 052108 (2013)

  9. Dines, L.L.: On the mapping of quadratic forms. Bull. Am. Math. Soc. 47, 494–498 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dinh, N., Mo, T.H.: Generalizations of the Hahn–Banach theorem revisited. Taiwan. J. Math. 19, 1285–1304 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fan, K., Glicksberg, I., Hoffman, A.J.: Systems of inequalities involving convex functions. Proc. Am. Math. Soc. 8, 617–622 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  12. Flores-Bazán, F., Flores-Bazán, F., Vera, C.: Gordan-type alternative theorems and vector optimization revisited. In: Ansari, Q.H., Yao, J.-C. (eds.) Recent Developments in Vector Optimization, pp. 29–59. Springer, Berlin (2012)

  13. Giorgi, G., Guerraggio, A., Thierfelder, J.: Mathematics of Optimization: Smooth and Nonsmooth Case. Elsevier Science B.V, Amsterdam (2004)

    MATH  Google Scholar 

  14. Golikov, A.I., Evtushenko, Y.G.: Theorems of the alternative and their applications in numerical methods. Comput. Math. Math. Phys. 43, 338–358 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Gordan, P.: Uber die auflösung linearer gleichungen mit reelen coefficienten. Math. Ann. 6, 23–28 (1873)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gowdaa, M.S., Ravindranb, G.: On the game-theoretic value of a linear transformation relative to a self-dual cone. Linear Algebra Appl. 469, 440–463 (2015)

    Article  MathSciNet  Google Scholar 

  17. Grzybowski, J., Przybycień, H., Urbański, R.: On Simons’ Version of Hahn–Banach–Lagrange Theorem, Function Spaces X, 99–104, Banach Center Publications 102. Polish Academy of Sciences, Institute of Mathematics, Warsaw (2014)

  18. Hu, S.-L., Huang, Z.-H.: Theorems of the alternative for inequality systems of real polynomials. J. Optim. Theory Appl. 154, 1–16 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jakubovič, V.A.: The S-Procedure in Nonlinear Control Theory, vol. 1, pp. 62–77. Vestnik Leningrad University (1971)

  20. Jeyakumar, V.: On optimality conditions in nonsmooth inequality constrained minimization. Numer. Funct. Anal. Optim. 9, 535–546 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jeyakumar, V., Lee, G.M., Li, G.Y.: Alternative theorems for quadratic inequality systems and global quadratic optimization. SIAM J. Optim. 20, 983–1001 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jeyakumar, V., Lee, G.M., Li, G.Y.: Global optimality conditions for classes of non-convex multi-objective quadratic optimization problems. In: Burachik, R.S., Yao, J.-C. (eds.) Variational Analysis and Generalized Differentiation in Optimization and Control. Springer Optimization and Its Applications, vol. 47, pp. 177–186. Springer, New York (2010)

  23. Jin, Y., Kalantari, B.: A procedure of Chvátal for testing feasibility in linear programming and matrix scaling. Linear Algebra Appl. 416, 795–798 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kassay, G., Kolumbán, J.: On a generalized sup-inf problem. J. Optim. Theory Appl. 91, 651–670 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. König, H.: Über das von Neumannsche minimax-theorem. Arch. Math. 19, 482–487 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  26. König, H.: Sublinear functionals and conical measures. Arch. Math. 77, 56–64 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kuroiwa, D., Lee, G.: On robust convex multiobjective optimization. J. Nonlinear Convex Anal. 15, 1125–1136 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Li Y.: Automatic synthesis of multiple ranking functions with supporting invariants via DISCOVERER. In: 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE 2010), Proceedings, vol. 1, pp. V1285–V1290 (2010)

  29. Luo, Z., Qin, L., Kong, L., Xiu, N.: The nonnegative zero-norm minimization under generalized Z-matrix measurement. J. Optim. Theory Appl. 160, 854–864 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mangasarian, O.L.: A stable theorem of the alternative: an extension of the Gordan theorem. Linear Algebra Appl. 41, 209–223 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mazur, S., Orlicz, W.: Sur les espaces métriques linéaires II. Stud. Math. 13, 137–179 (1953)

    Article  MATH  Google Scholar 

  32. Noor, E., Lewis, N.E., Milo, R.: A proof for loop-law constraints in stoichiometric metabolic networks. BMC Syst. Biol. 6, 140 (2012)

    Article  Google Scholar 

  33. Polyak, B.T.: Convexity of quadratic transformations and its use in control and optimization. J. Optim. Theory Appl. 99, 553–583 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pták, V.: On a theorem of Mazur and Orlicz. Stud. Math. 15, 365–366 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ruiz Galán, M.: An intrinsic notion of convexity for minimax. J. Convex Anal. 21, 1105–1139 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Ruiz Galán, M.: The Gordan theorem and its implications for minimax theory. J. Nonlinear Convex Anal. 17, 2385–2405 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Simons, S.: Minimax and Monotonicity. Lecture Notes in Mathematics, vol. 1693. Springer, Berlin (1998)

    MATH  Google Scholar 

  38. Simons, S.: The Hahn–Banach–Lagrange theorem. Optimization 56, 149–169 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Stefanescu, A.: A theorem of the alternative and a two-function minimax theorem. J. Appl. Math. 2004(2), 167–177 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tang, L.P., Zhao, K.Q.: Optimality conditions for a class of composite multiobjective nonsmooth optimization problems. J. Glob. Optim. 57, 399–414 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yuan, Y.: On a subproblem of trust region algorithms for constrained optimization. Math. Program. 47, 53–63 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Research partially supported by Project MTM2016-80676-P (AEI/FEDER, UE) and by Junta de Andalucía Grant FQM359.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ruiz Galán.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz Galán, M. A theorem of the alternative with an arbitrary number of inequalities and quadratic programming. J Glob Optim 69, 427–442 (2017). https://doi.org/10.1007/s10898-017-0525-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-017-0525-x

Keywords

Mathematics Subject Classification

Navigation