Journal of Global Optimization

, Volume 71, Issue 1, pp 5–20

# Global optimization based on bisection of rectangles, function values at diagonals, and a set of Lipschitz constants

• Remigijus Paulavičius
• Lakhdar Chiter
• Julius Žilinskas
Article

## Abstract

We consider a global optimization problem for Lipschitz-continuous functions with an unknown Lipschitz constant. Our approach is based on the well-known DIRECT (DIviding RECTangles) algorithm and motivated by the diagonal partitioning strategy. One of the main advantages of the diagonal partitioning scheme is that the objective function is evaluated at two points at each hyper-rectangle and, therefore, more comprehensive information about the objective function is considered than using the central sampling strategy used in most DIRECT-type algorithms. In this paper, we introduce a new DIRECT-type algorithm, which we call BIRECT (BIsecting RECTangles). In this algorithm, a bisection is used instead of a trisection which is typical for diagonal-based and DIRECT-type algorithms. The bisection is preferable to the trisection because of the shapes of hyper-rectangles, but usual evaluation of the objective function at the center or at the endpoints of the diagonal are not favorable for bisection. In the proposed algorithm the objective function is evaluated at two points on the diagonal equidistant between themselves and the endpoints of a diagonal. This sampling strategy enables reuse of the sampling points in descendant hyper-rectangles. The developed algorithm gives very competitive numerical results compared to the DIRECT algorithm and its well know modifications.

## Keywords

Global optimization Lipschitz optimization DIRECT-type algorithms Diagonal approach Bisection

## Notes

### Acknowledgements

This research was funded by a Grant (No. MIP-051/2014) from the Research Council of Lithuania.

## References

1. 1.
Casado, L.G., García, I., Tóth-G, B., Hendrix, E.M.T.: On determining the cover of a simplex by spheres centered at its vertices. J. Glob. Optim. 50(4), 645–655 (2011). doi:
2. 2.
Custódio, A.L., Rocha, H., Vicente, L.N.: Incorporating minimum Frobenius norm models in direct search. Comput. Optim. Appl. 46(2), 265–278 (2010). doi:
3. 3.
Di Serafino, D., Liuzzi, G., Piccialli, V., Riccio, F., Toraldo, G.: A modified DIviding RECTangles algorithm for a problem in astrophysics. J. Optim. Theory Appl. 151(1), 175–190 (2011). doi:
4. 4.
Finkel, D.E.: Global optimization with the Direct algorithm. Ph.D. thesis, North Carolina State University (2005)Google Scholar
5. 5.
Finkel, D.E., Kelley, C.T.: Additive scaling and the DIRECT algorithm. J. Glob. Optim. 36(4), 597–608 (2006). doi:
6. 6.
Floudas, C.A., Pardalos, P.M. (eds.): Encyclopedia of Optimization (Vol. 6), 2nd edn. Springer, Berlin (2009)Google Scholar
7. 7.
Gablonsky, J.M.: Modifications of the Direct algorithm. Ph.D. thesis, North Carolina State University (2001)Google Scholar
8. 8.
Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. Glob. Optim. 21(1), 27–37 (2001). doi:
9. 9.
Gorodetsky, S.Y.: Paraboloid triangulation methods in solving multiextremal optimization problems with constraints for a class of functions with Lipschitz directional derivatives. Vestn. Lobachevsky State Univ. Nizhni Novgorod 1(1), 144–155 (2012). (in Russian)Google Scholar
10. 10.
Hedar, A.: Test functions for unconstrained global optimization. http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm (2005). Accessed: 22 Feb 2016
11. 11.
Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization. Nonconvex Optimization and Its Application. Kluwer Academic Publishers, Dordrect (1995)
12. 12.
Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin (1996)
13. 13.
Jones, D.R.: The direct global optimization algorithm. In: Floudas, C.A., Pardalos, P.M. (eds.) The Encyclopedia of Optimization, pp. 431–440. Kluwer Academic Publishers, Dordrect (2001)
14. 14.
Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993). doi:
15. 15.
Kvasov, D.E., Pizzuti, C., Sergeyev, Y.D.: Local tuning and partition strategies for diagonal GO methods. Numer. Math. 94(1), 93–106 (2003). doi:
16. 16.
Kvasov, D.E., Sergeyev, Y.D.: A univariate global search working with a set of Lipschitz constants for the first derivative. Optim. Lett. 3(2), 303–318 (2009). doi:
17. 17.
Kvasov, D.E., Sergeyev, Y.D.: Lipschitz gradients for global optimization in a one-point-based partitioning scheme. J. Comput. Appl. Math. 236(16), 4042–4054 (2012). doi:
18. 18.
Kvasov, D.E., Sergeyev, Y.D.: Lipschitz global optimization methods in control problems. Autom. Remote Control 74(9), 1435–1448 (2013). doi:
19. 19.
Lera, D., Sergeyev, Y.D.: Deterministic global optimization using space-filling curves and multiple estimates of Lipschitz and Hölder constants. Commun. Nonlinear Sci. Numer. Simul. 23(1), 328–342 (2015). doi:
20. 20.
Liu, Q., Cheng, W.: A modified DIRECT algorithm with bilevel partition. J. Glob. Optim. 60(3), 483–499 (2014). doi:
21. 21.
Liu, Q., Zeng, J., Yang, G.: MrDIRECT: a multilevel robust DIRECT algorithm for global optimization problems. J. Glob. Optim. 62(2), 205–227 (2015). doi:
22. 22.
Liuzzi, G., Lucidi, S., Piccialli, V.: A direct-based approach exploiting local minimizations for the solution for large-scale global optimization problems. Comput. Optim. Appl. 45(2), 353–375 (2010). doi:
23. 23.
Liuzzi, G., Lucidi, S., Piccialli, V.: A DIRECT-based approach exploiting local minimizations for the solution of large-scale global optimization problems. Comput. Optim. Appl. 45, 353–375 (2010). doi:
24. 24.
Liuzzi, G., Lucidi, S., Piccialli, V.: A partition-based global optimization algorithm. J. Glob. Optim. 48(1), 113–128 (2010). doi:
25. 25.
Liuzzi, G., Lucidi, S., Piccialli, V.: Exploiting derivative-free local searches in direct-type algorithms for global optimization. Computat. Optim. Appl. (2014). doi:
26. 26.
Mockus, J., Paulavičius, R., Rusakevičius, D., Šešok, D., Žilinskas, J.: Application of Reduced-set Pareto-Lipschitzian Optimization to truss optimization. J. Glob. Optim. (2015). doi:
27. 27.
Paulavičius, R., Sergeyev, Y.D., Kvasov, D.E., Žilinskas, J.: Globally-biased DISIMPL algorithm for expensive global optimization. J. Glob. Optim. 59(2–3), 545–567 (2014). doi:
28. 28.
Paulavičius, R., Žilinskas, J.: Analysis of different norms and corresponding Lipschitz constants for global optimization. Inf. Technol. Control 36(4), 383–387 (2007)Google Scholar
29. 29.
Paulavičius, R., Žilinskas, J.: Simplicial Lipschitz optimization without the Lipschitz constant. J. Glob. Optim. 59(1), 23–40 (2013). doi:
30. 30.
Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. SpringerBriefs in Optimization. Springer, New York (2014). doi:
31. 31.
Paulavičius, R., Žilinskas, J.: Advantages of simplicial partitioning for Lipschitz optimization problems with linear constraints. Optim. Lett. 10(2), 237–246 (2016). doi:
32. 32.
Paulavičius, R., Žilinskas, J., Grothey, A.: Parallel branch and bound for global optimization with combination of Lipschitz bounds. Optim. Methods Softw. 26(3), 487–498 (2011). doi:
33. 33.
Pintér, J.D.: Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications). Kluwer Academic Publishers, Dordrecht (1996)
34. 34.
Sergeyev, Y.D.: On convergence of divide the best global optimization algorithms. Optimization 44(3), 303–325 (1998)
35. 35.
Sergeyev, Y.D.: An efficient strategy for adaptive partition of $$N$$-dimensional intervals in the framework of diagonal algorithms. J. Optim. Theory Appl. 107(1), 145–168 (2000). doi:
36. 36.
Sergeyev, Y.D.: Efficient partition of n-dimensional intervals in the framework of one-point-based algorithms. J. Optim. Theory Appl. 124(2), 503–510 (2005). doi:
37. 37.
Sergeyev, Y.D., Kvasov, D.E.: Global search based on diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006). doi:
38. 38.
Sergeyev, Y.D., Kvasov, D.E.: Diagonal Global Optimization Methods. FizMatLit, Moscow (2008). (in Russian)
39. 39.
Sergeyev, Y.D., Kvasov, D.E.: On deterministic diagonal methods for solving global optimization problems with Lipschitz gradients. In: Optimization, Control, and Applications in the Information Age, vol. 130, pp. 315–334. Springer, Switzerland (2015). doi:
40. 40.
Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Constraints: Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)
41. 41.
Tuy, H.: Convex Analysis and Global Optimization. Springer, Dordrecht (2013)
42. 42.
Žilinskas, A., Žilinskas, J.: Adaptation of a one-step worst-case optimal univariate algorithm of bi-objective Lipschitz optimization to multidimensional problems. Commun. Nonlinear Sci. Numer. Simul. 21(1–3), 89–98 (2015). doi:
43. 43.
Zhigljavsky, A., Žilinskas, A.: Stochastic Global Optimization. Springer, New York (2008)
44. 44.
Žilinskas, A., Žilinskas, J.: Global optimization based on a statistical model and simplicial partitioning. Comput. Math. Appl. 44(7), 957–967 (2002). doi:
45. 45.
Žilinskas, J.: Branch and bound with simplicial partitions for global optimization. Math. Model. Anal. 13(1), 145–159 (2008). doi:

## Authors and Affiliations

• Remigijus Paulavičius
• 1
• Lakhdar Chiter
• 2
• Julius Žilinskas
• 1
Email author
1. 1.Institute of Mathematics and InformaticsVilnius UniversityVilniusLithuania
2. 2.Department of Mathematics, Faculty of SciencesUniversity of Sétif 1SétifAlgeria