Journal of Global Optimization

, Volume 68, Issue 3, pp 467–499 | Cite as

A nonlinear programming model with implicit variables for packing ellipsoids



The problem of packing ellipsoids is considered in the present work. Usually, the computational effort associated with numerical optimization methods devoted to packing ellipsoids grows quadratically with respect to the number of ellipsoids being packed. The reason is that the number of variables and constraints of ellipsoids’ packing models is associated with the requirement that every pair of ellipsoids must not overlap. As a consequence, it is hard to solve the problem when the number of ellipsoids is large. In this paper, we present a nonlinear programming model for packing ellipsoids that contains a linear number of variables and constraints. The proposed model finds its basis in a transformation-based non-overlapping model recently introduced by Birgin et al. (J Glob Optim 65(4):709–743, 2016). For solving large-sized instances of ellipsoids’ packing problems with up to 1000 ellipsoids, a multi-start strategy that combines clever initial random guesses with a state-of-the-art (local) nonlinear optimization solver is presented. Numerical experiments show the efficiency and effectiveness of the proposed model and methodology.


Cutting and packing ellipsoids Optimization Nonlinear programming Models Numerical experiments 



The authors are indebted to the anonymous referees whose comments helped to improve this paper.


  1. 1.
    Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: On augmented Lagrangian methods with general lower-level constraints. SIAM J. Optim. 18(4), 1286–1309 (2007)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Andretta, M., Birgin, E.G., Martínez, J.M.: Practical active-set Euclidian trust-region method with spectral projected gradients for bound-constrained minimization. Optimization 54(3), 305–325 (2005)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)MATHGoogle Scholar
  4. 4.
    Bezrukov, A., Stoyan, D.: Simulation and statistical snalysis of random packings of ellipsoids. Par. Part. Syst. Charact. 23(5), 388–398 (2007)CrossRefGoogle Scholar
  5. 5.
    Birgin, E.G., Bustamante, L.H., Callisaya, H.F., Martínez, J.M.: Packing circles within ellipses. Int. Trans. Oper. Res. 20(3), 365–389 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Birgin, E.G., Floudas, C.A., Martínez, J.M.: Global minimization using an augmented Lagrangian method with variable lower-level constraints. Math. Program. 125(1), 139–162 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Birgin, E.G., Gentil, J.M.: New and improved results for packing identical unitary radius circles within triangles, rectangles and strips. Comput. Oper. Res. 37(7), 1318–1327 (2010)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Birgin, E.G., Lobato, R.D., Martínez, J.M.: Packing ellipsoids by nonlinear optimization. J. Glob. Optim. 65(4), 709–743 (2016)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Birgin, E.G., Martínez, J.M.: A box-constrained optimization algorithm with negative curvature directions and spectral projected gradients. Computing [Suppl] 15(1), 49–60 (2001)MathSciNetMATHGoogle Scholar
  10. 10.
    Birgin, E.G., Martínez, J.M.: Large-scale active-set box-constrained optimization method with spectral projected gradients. Comput. Optim. Appl. 23(1), 101–125 (2002)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Birgin, E.G., Martínez, J.M.: Practical Augmented Lagrangian Methods for Constrained Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2014)CrossRefMATHGoogle Scholar
  12. 12.
    Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10(4), 1196–1211 (2000)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Birgin, E.G., Martínez, J.M., Raydan, M.: Algorithm 813: SPG-software for convex-constrained optimization. ACM Trans. Math. Softw. 27(3), 340–349 (2001)CrossRefMATHGoogle Scholar
  14. 14.
    Birgin, E.G., Martínez, J.M., Ronconi, D.P.: Optimizing the packing of cylinders into a rectangular container: a nonlinear approach. Eur. J. Oper. Res. 160(1), 19–33 (2005)CrossRefMATHGoogle Scholar
  15. 15.
    Birgin, E.G., Sobral, F.N.C.: Minimizing the object dimensions in circle and sphere packing problems. Comput. Oper. Res. 35(7), 2357–2375 (2008)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Castillo, I., Kampas, F.J., Pintér, J.D.: Solving circle packing problems by global optimization: numerical results and industrial applications. Eur. J. Oper. Res. 191(3), 786–802 (2008)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Chernov, N., Stoyan, Yu., Romanova, T.: Mathematical model and efficient algorithms for object packing problem. Comput. Geom. 43(5), 535–553 (2010)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Choi, Y.K., Chang, J.W., Wang, W., Kim, M.S., Elber, G.: Continuous collision detection for ellipsoids. IEEE Trans. Vis. Comput. Graph. 15(2), 311–324 (2009)CrossRefGoogle Scholar
  19. 19.
    Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups Volume 290 of Grundlehren der math. Wissenschaften. Springer, New York (1999)CrossRefGoogle Scholar
  20. 20.
    Donev, A., Cisse, I., Sachs, D., Variano, E., Stillinger, F.H., Connelly, R., Torquato, S., Chaikin, P.M.: Improving the density of jammed disordered packings using ellipsoids. Science 303(5660), 990–993 (2004)CrossRefGoogle Scholar
  21. 21.
    Donev, A., Connelly, R., Stillinger, F.H., Torquato, S.: Underconstrained jammed packings of nonspherical hard particles: ellipses and ellipsoids. Phys. Rev. E 75(5), 051304 (2007)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Donev, A., Stillinger, F.H., Chaikin, P.M., Torquato, S.: Unusually dense crystal packings of ellipsoids. Phys. Rev. Lett. 92, 255506 (2004)CrossRefGoogle Scholar
  23. 23.
    Donev, A., Torquato, S., Stillinger, F.H.: Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. I. Algorithmic details. J. Comput. Phys. 202(2), 737–764 (2005)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Donev, A., Torquato, S., Stillinger, F.H.: Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. II. Applications to ellipses and ellipsoids. J. Comput. Phys. 202(2), 765–793 (2005)MathSciNetMATHGoogle Scholar
  25. 25.
    Galiev, ShI, Lisafina, M.S.: Numerical optimization methods for packing equal orthogonally oriented ellipses in a rectangular domain. Comput. Math. Math. Phys. 53(11), 1748–1762 (2013)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)MATHGoogle Scholar
  27. 27.
    Izmailov, A.F., Solodov, M.V., Uskov, E.I.: Global convergence of augmented Lagrangian methods applied to optimization problems with degenerate constraints, including problems with complementarity constraints. SIAM J. Optim. 22(4), 1579–1606 (2012)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Izmailov, A.F., Solodov, M.V., Uskov, E.I.: Combining stabilized SQP with the augmented Lagrangian algorithm. Comput. Optim. Appl. 62(2), 405–429 (2015)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Kallrath, J.: Cutting circles and polygons from area-minimizing rectangles. J. Glob. Optim. 43(2), 299–328 (2009)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Kallrath, J.: Packing ellipsoids into volume-minimizing rectangular boxes. J. Glob. Optim. (2015). doi: 10.1007/s10898-015-0348-6
  31. 31.
    Kallrath, J., Rebennack, S.: Cutting ellipses from area-minimizing rectangles. J. Glob. Optim. 59(2), 405–437 (2014)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Kampas, F.J., Castillo, I., Pintér, J.D.: General ellipse packings in optimized regular polygons. (2016)
  33. 33.
    Kampas, F.J., Pintér, J.D., Castillo, I.: General ellipse packings in an optimized circle using embedded Lagrange multipliers. (2016)
  34. 34.
    Lobato, R.D.: Ellipsoid packing. PhD thesis, University of Sao Paulo (2015)Google Scholar
  35. 35.
    Man, W., Donev, A., Stillinger, F.H., Sullivan, M.T., Russel, W.B., Heeger, D., Inati, S., Torquato, S., Chaikin, P.M.: Experiments on random packings of ellipsoids. Phys. Rev. Lett. 104, 185501 (2010)CrossRefGoogle Scholar
  36. 36.
    Martínez, J.M.: Local minimizers of quadratic functions on euclidean balls and spheres. SIAM J. Optim. 4(1), 159–176 (1994)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Martínez, L., Andrade, R., Birgin, E.G., Martínez, J.M.: Packmol: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30(13), 2157–2164 (2009)CrossRefGoogle Scholar
  38. 38.
    Pankratov, A., Romanova, T., Khlud, O.: Quasi-phi-functions in packing problem of ellipsoids. Radioelectron. Inform. 68(1), 37–41 (2015)Google Scholar
  39. 39.
    Stoyan, Y., Romanova, T., Pankratov, A., Chugay, A.: Optimized object packings using quasi-phi-functions. In: Fasano, G., Pintér, J.D. (eds.) Optimized Packings with Applications, Volume 105 of Springer Optimization and Its Applications, Chapter 13, pp. 265–293. Springer, Cham (2015)CrossRefGoogle Scholar
  40. 40.
    Stoyan, Y.G., Pankratov, A., Romanova, T.: Quasi-phi-functions and optimal packing of ellipses. J. Glob. Optim. 65(2), 283–307 (2016)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Stoyan, Y.G., Yas’kov, G.: A mathematical model and a solution method for the problem of placing various-sized circles into a strip. Eur. J. Oper. Res. 156(3), 590–600 (2004)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Stoyan, Y.G., Yas’kov, G.: Packing congruent hyperspheres into a hypersphere. J. Glob. Optim. 52(4), 855–868 (2012)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Stoyan, Y.G., Yas’kov, G.: Packing equal circles into a circle with circular prohibited areas. Int. J. Comput. Math. 89(10), 1355–1369 (2012)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Stoyan, Y.G., Zlotnik, M.V., Chugay, A.: Solving an optimization packing problem of circles and non-convex polygons with rotations into a multiply connected region. J. Oper. Res. Soc. 63(3), 379–391 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • E. G. Birgin
    • 1
  • R. D. Lobato
    • 1
  • J. M. Martínez
    • 2
  1. 1.Department of Computer Science, Institute of Mathematics and StatisticsUniversity of São PauloSão PauloBrazil
  2. 2.Department of Applied Mathematics, Institute of Mathematics, Statistics, and Scientific ComputingState University of CampinasCampinasBrazil

Personalised recommendations