Advertisement

Journal of Global Optimization

, Volume 68, Issue 3, pp 663–675 | Cite as

Decoupling linear and nonlinear regimes: an evaluation of efficiency for nonlinear multidimensional optimization

  • Christopher M. Cotnoir
  • Balša Terzić
Article
  • 139 Downloads

Abstract

Solving a large subset of multidimensional nonlinear optimization problems can be significantly improved by decoupling their intrinsically linear and nonlinear parts. This effectively decreases the dimensionality of the problem, reduces the search space and improves the efficiency of the optimization. This decoupled approach is generalized with mathematical formalism and its superiority over standard methods empirically verified and quantified on a couple of examples involving \(\chi ^2\) curve fitting to data.

Keywords

Multidimensional nonlinear optimization Nonlinear chi-square fitting Genetic algorithm 

References

  1. 1.
    Hofler, A., Terzić, B., Kramer, M., Zvezdin, A., Morozov, V., Roblin, Y., Lin, F., Jarvis, C.: Innovative applications of genetic algorithms to problems in accelerator physics. Phys. Rev. Spec. Top. Accel. Beams 16, 010101 (2013)CrossRefGoogle Scholar
  2. 2.
    Terzić, B., Hofler, A., Reeves, C., Khan, S., Krafft, G., Benesch, J., Freyberger, A., Ranjan, D.: Simultaneous optimization of the cavity heat load and trip rates in linacs using a genetic algorithm. Phys. Rev. Spec. Top. Accel. Beams 17, 101003 (2014)CrossRefGoogle Scholar
  3. 3.
    Terzić, B., Deitrick, K., Hofler, A., Krafft, G.: Narrow-band emission in Thomson sources operating in the high-field regime. Phys. Rev. Lett. 112, 074801 (2014)CrossRefGoogle Scholar
  4. 4.
    Hau, B., Amorim, L., Filho, A.B.: Mathematical functions to describe disease progress curves of double sigmoid pattern. Phytopathology 83, 928 (1993)CrossRefGoogle Scholar
  5. 5.
    Golub, G., Pereyra, V.: Separable nonlinear least squares: the variable projection method and its applications. Inverse Prob. 19, R1–R26 (2003)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Scolnik, H.: On the solution of nonlinear least squares problem. 15(2), 18–23 (1971)Google Scholar
  7. 7.
    Golub, G., Pereyra, V.: The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate. SIAM J. Numer. Anal. 10(2), 413–432 (1973)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Guttman, I., Pereyra, V., Scolnik, H.: Least squares estimation for a class of non-linear models. Technometrics 15(2), 209–218 (1973)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Žilinskas, A., Žilinskas, J.: Interval arithmetic based optimization in nonlinear regression. Informatica 21(1), 149–158 (2010)MathSciNetMATHGoogle Scholar
  10. 10.
    Žilinskas, A., Žilinskas, J.: A hybrid global optimization algorithm for non-linear least squares regression. J. Glob. Optim. 56(2), 265–277 (2013)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Paulavičius, R., Žilinskas, J.: Simplicial Lipschitz optimization without the Lipschitz constant. J. Glob. Optim. 59(1), 23–40 (2014)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Paulavicius, R., Zilinskas, J.: Simplicial Global Optimization. Springer, New York (2014)CrossRefMATHGoogle Scholar
  13. 13.
    Cotnoir, C.: A Hybrid Nature-Inspired Algorithm for Multidimensional Nonlinear Optimization with Applications to Biology. Senior thesis, Old Dominion University (2015)Google Scholar
  14. 14.
    Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA—A Platform and Programming Language Independent Interface for Search Algorithms. Technical report 154, Institut fur Technische Informatik und Kommunikationsnetze, ETH Zurich (2002)Google Scholar
  15. 15.
    Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA—a platform and programming language independent interface for search algorithms. In: Fonseca, C., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) Evolutionary Multi-Criterion Optimization (EMO 2003), pp. 494–508. Lecture Notes in Computer Science. Springer (2003)Google Scholar
  16. 16.
    Inspyred Library for Python. https://pypi.python.org/pypi/inspyred
  17. 17.
    The Python Programming Language. https://www.python.org/
  18. 18.
    Verhulst, P.F.: Recherches mathématiques sur la loi d’accroissement de la population. Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres de Bruxelles 18, 1–42 (1845)Google Scholar
  19. 19.
    Rosenbrock, H.: An automatic method for finding the greatest or least value of a function. Comput. J. 3, 175–184 (1960)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsOld Dominion UniversityNorfolkUSA
  2. 2.Center for Accelerator ScienceOld Dominion UniversityNorfolkUSA

Personalised recommendations