Journal of Global Optimization

, Volume 68, Issue 2, pp 255–277 | Cite as

Solving discrete linear bilevel optimization problems using the optimal value reformulation

  • S. DempeEmail author
  • F. Mefo Kue


In this article, we consider two classes of discrete bilevel optimization problems which have the peculiarity that the lower level variables do not affect the upper level constraints. In the first case, the objective functions are linear and the variables are discrete at both levels, and in the second case only the lower level variables are discrete and the objective function of the lower level is linear while the one of the upper level can be nonlinear. Algorithms for computing global optimal solutions using Branch and Cut and approximation of the optimal value function of the lower level are suggested. Their convergence is shown and we illustrate each algorithm via an example.


Bilevel programming Solution algorithm Discrete parametric optimization Global optimization 

Mathematics Subject Classification

90C11 90C10 90C29 



The authors wish to thank S. Franke and P. Mehlitz for many helpful comments and recommendations.


  1. 1.
    Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-linear Parametric Optimization. Birkhäuser, Basel (1983)zbMATHGoogle Scholar
  2. 2.
    Bard, J., Falk, J.E.: An explicit solution to the multi-level programming problem. Comput. Oper. Res. 9(1), 77–100 (1982)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bard, J.F.: Practical Bilevel Optimization: Algorithms and Applications. Kluwer, Dordrecht (1998)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bard, J.F., Moore, J.T.: An algorithm for the discrete bilevel programming problem. J. Optim. Theory Appl. Nav. Res. Logist. 39(3), 419–435 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Barton, M., Laatsch, R.: Maximal and minimal subadditive extensions. Am. Math. Mon. 73(4), 141–143 (1966)CrossRefzbMATHGoogle Scholar
  6. 6.
    Chern, M.S., Jan, R.H., Chern, R.J.: Parametric nonlinear integer programming: the right-hand side case. Eur J. Oper. Res. 54(2), 237–255 (1991)CrossRefzbMATHGoogle Scholar
  7. 7.
    Cornuéjols, G.: Valid inequalities for mixed integer linear programs. Math. Program. 112(1), 3–44 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dempe, S.: Discrete Bilevel Optimization Problems. Institut für Wirtschaftsinformatik Universtät, Leipzig (1996)Google Scholar
  9. 9.
    Dempe, S.: Foundations of Bilevel Programming. Kluwer, Dordrecht (2002)zbMATHGoogle Scholar
  10. 10.
    Dempe, S.: Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints. Optim.: J. Math. Program. Oper. Res. 52, 333–359 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dempe, S., Dutta, J.: Is bilevel programming a special case of a mathematical program with complementarity constraints? Math. Program. 131(1–2), 37–48 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dempe, S., Kalashnikov, V., Pérez-Valdés, G.A., Kalashnykova, N.: Bilevel Programming Problems. Energy Systems. Springer, Berlin (2015)zbMATHGoogle Scholar
  13. 13.
    Dempe, S., Luderer, B., Xu, Z.: Global optimization of a mixed integer bilevel programming problem. Preprint version pp. 1–19 (2014)Google Scholar
  14. 14.
    Dempe, S., Zemkoho, A.B.: On the Karush–Kuhn–Tucker reformulation of the bilevel optimization problem. Nonlinear Anal.: Theory Methods Appl. 75(3), 1202–1218 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    DeNegre, S.: Interdiction and discrete bilevel linear programming. Ph.D. thesis, Lehigh University (2011)Google Scholar
  16. 16.
    DeNegre, S.T., Ralphs, T.K.: A branch-and-cut algorithm for integer bilevel linear programs. In: Chinneck, J.W., Kristjansson, B., Saltzman, M.J. (eds.) Operations Research and Cyber-Infrastructure, pp. 65–78. Springer (2009)Google Scholar
  17. 17.
    Domínguez, L.F., Pistikopoulos, E.N.: Multiparametric programming based algorithms for pure integer and mixed-integer bilevel programming problems. Comput. Chem. Eng. 34(12), 2097–2106 (2010)CrossRefGoogle Scholar
  18. 18.
    Duan, L., Xiaoling, S.: Nonlinear Integer Programming. Springer, Boston (2006)zbMATHGoogle Scholar
  19. 19.
    Edmunds, T.A., Bard, J.F.: An algorithm for the mixed-integer nonlinear bilevel programming problem. Ann. Oper. Res. 34(1), 149–162 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Fanghänel, D., Dempe, S.: Bilevel programming with discrete lower level problems. Optimization 58(8), 1029–1047 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Gümüs, Z., Floudas, C.: Global optimization of mixed integer bilevel programming problems. Comput. Manag. Sci. 2, 181–212 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Guzelsoy, M.: Dual methods in mixed integer linear programming. Ph.D. thesis, Lehigh University (2010)Google Scholar
  23. 23.
    Jan, R.H., Chern, M.S.: Nonlinear integer bilevel programming. Eur. J. Oper. Res. 72(3), 574–587 (1994)CrossRefzbMATHGoogle Scholar
  24. 24.
    Köppe, M., Queyranne, M., Ryan, C.T.: Parametric integer programming algorithm for bilevel mixed integer programs. J. Optim. Theory Appl. 146(1), 137–150 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Laatsch, R.: Extensions of subadditive functions. Pac. J. Math 14, 209–215 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Labbé, M., Marcotte, P., Savard, G.: A bilevel model of taxation and its application to optimal highway pricing. Manag. Sci. 44(12), 1608–1622 (1998)CrossRefzbMATHGoogle Scholar
  27. 27.
    Labbé, M., Violin, A.: Bilevel programming and price setting problems. 4OR 11(1), 1–30 (2013)Google Scholar
  28. 28.
    Mitsos, A.: Global solution of nonlinear mixed-integer bilevel programs. J. Glob. Optim. 47(4), 557–582 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (1988)zbMATHGoogle Scholar
  30. 30.
    Outrata, J.V.: On the numerical solution of a class of Stackelberg problems. ZOR Math. Methods Oper. Res. 34(4), 255–277 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Saharidis, G.K., Ierapetritou, M.G.: Resolution method for mixed integer bi-level linear problems based on decomposition technique. J. Glob. Optim. 44(1), 29–51 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Vicente, L., Calamai, P.: Bilevel and multilevel programming: a bibliography review. J. Glob. Optim. 5(3), 291–306 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Vicente, L., Savard, G., Judice, J.: Discrete linear bilevel programming problem. J. Optim. Theory Appl. 89(3), 597–614 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Xu, P., Wang, L.: An exact algorithm for the bilevel mixed integer linear programming problem under three simplifying assumptions. Comput. Oper. Res. 41, 309–318 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zeng, B., An, Y.: Solving bilevel mixed integer program by reformulations and decomposition. Optimization online pp. 1–34 (2014)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceTU Bergakademie FreibergFreibergGermany

Personalised recommendations