Advertisement

Journal of Global Optimization

, Volume 68, Issue 2, pp 387–411 | Cite as

Kantorovich’s theorem on Newton’s method under majorant condition in Riemannian manifolds

  • T. Bittencourt
  • O. P. Ferreira
Article
  • 243 Downloads

Abstract

Extension of concepts and techniques of linear spaces for the Riemannian setting has been frequently attempted. One reason for the extension of such techniques is the possibility to transform some Euclidean non-convex or quasi-convex problems into Riemannian convex problems. In this paper, a version of Kantorovich’s theorem on Newton’s method for finding a singularity of differentiable vector fields defined on a complete Riemannian manifold is presented. In the presented analysis, the classical Lipschitz condition is relaxed using a general majorant function, which enables us to not only establish the existence and uniqueness of the solution but also unify earlier results related to Newton’s method. Moreover, a ball is prescribed around the points satisfying Kantorovich’s assumptions and convergence of the method is ensured for any starting point within this ball. In addition, some bounds for the Q-quadratic convergence of the method, which depends on the majorant function, are obtained.

Keywords

Newton’s method Robust Kantorovich’s theorem Majorant function Vector field Riemannian manifold 

Notes

Acknowledgments

Funding was provided by Fundação de Apoio a Pesquisa do Estado de Goiás (Grant No. 201210267000909-05/2012), CNPq (Grant No 305158/2014-7), CAPES.

References

  1. 1.
    Absil, P.-A., Amodei, L., Meyer, G.: Two Newton methods on the manifold of fixed-rank matrices endowed with Riemannian quotient geometries. Comput. Stat. 29(3–4), 569–590 (2014)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Adler, R.L., Dedieu, J.-P., Margulies, J.Y., Martens, M., Shub, M.: Newton’s method on Riemannian manifolds and a geometric model for the human spine. IMA J. Numer. Anal. 22(3), 359–390 (2002)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Alvarez, F., Bolte, J., Munier, J.: A unifying local convergence result for Newton’s method in Riemannian manifolds. Found. Comput. Math. 8(2), 197–226 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Amat, S., Busquier, S., Castro, R., Plaza, S.: Third-order methods on Riemannian manifolds under Kantorovich conditions. J. Comput. Appl. Math. 255, 106–121 (2014)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Argyros, I.K.: An improved unifying convergence analysis of Newton’s method in Riemannian manifolds. J. Appl. Math. Comput. 25(1–2), 345–351 (2007)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Argyros, I.K., Hilout, S.: Newton’s method for approximating zeros of vector fields on Riemannian manifolds. J. Appl. Math. Comput. 29(1–2), 417–427 (2009)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Argyros, I.K., Magreñán, Á.A.: Extending the applicability of Gauss-Newton method for convex composite optimization on Riemannian manifolds. Appl. Math. Comput. 249, 453–467 (2014)MathSciNetMATHGoogle Scholar
  8. 8.
    Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Proximal point method for a special class of nonconvex functions on Hadamard manifolds. Optimization 64(2), 289–319 (2015)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. Springer, New York (1998). With a foreword by Richard M. KarpGoogle Scholar
  10. 10.
    Da Cruz Neto, J.X., Ferreira, O.P., Pérez, L.R.L., Németh, S.Z.: Convex-and monotone-transformable mathematical programming problems and a proximal-like point method. J. Global Optim. 35(1), 53–69 (2006)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Dedieu, J.-P., Priouret, P., Malajovich, G.: Newton’s method on Riemannian manifolds: convariant alpha theory. IMA J. Numer. Anal. 23(3), 395–419 (2003)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Dedieu, J.-P., Shub, M.: Multihomogeneous Newton methods. Math. Comp. 69(231), 1071–1098 (2000). (electronic)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    do Carmo, M.P.: Riemannian geometry. Mathematics: Theory & Applications (Translated from the second Portuguese edition by Francis Flaherty). Birkhäuser Boston, Inc., Boston (1992)Google Scholar
  14. 14.
    Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1999)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Ferreira, O.P., Gonçalves, M.L.N., Oliveira, P.R.: Convergence of the Gauss-Newton method for convex composite optimization under a majorant condition. SIAM J. Optim. 23(3), 1757–1783 (2013)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Ferreira, O.P., Silva, R.C.M.: Local convergence of Newton’s method under a majorant condition in Riemannian manifolds. IMA J. Numer. Anal. 32(4), 1696–1713 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Ferreira, O.P., Svaiter, B.F.: Kantorovich’s theorem on Newton’s method in Riemannian manifolds. J. Complexity 18(1), 304–329 (2002)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Ferreira, O.P., Svaiter, B.F.: Kantorovich’s majorants principle for Newton’s method. Comput. Optim. Appl. 42(2), 213–229 (2009)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Ferreira, O.P., Svaiter, B.F.: A robust Kantorovich’s theorem on the inexact Newton method with relative residual error tolerance. J. Complex. 28(3), 346–363 (2012)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Gabay, D.: Minimizing a differentiable function over a differential manifold. J. Optim. Theory Appl. 37(2), 177–219 (1982)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Hamilton, R.S.: The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. (N.S.) 7(1), 65–222 (1982)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms: Fundamentals. I. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 305. Springer, Berlin (1993)MATHGoogle Scholar
  23. 23.
    Karmarkar, N.: Riemannian geometry underlying interior-point methods for linear programming. In: Lagaries, J.C., Todd, M.J. (eds.) Contemporary Mathematics. Mathematical developments arising from linear programming, vol. 114, pp. 51–75. American Mathematical Society, Providence (1990)Google Scholar
  24. 24.
    Krantz, S.G., Parks, H.R.: The Implicit Function Theorem: History, Theory, and Applications. Modern Birkhäuser Classics. Birkhäuser/Springer, New York, Reprint of the 2003 edition (2013)Google Scholar
  25. 25.
    Lang, S.: Differential and Riemannian Manifolds vol. 160 of Graduate Texts in Mathematics, 3rd edn. Springer, New York (1995)CrossRefGoogle Scholar
  26. 26.
    Li, C., Wang, J.: Newton’s method on Riemannian manifolds: Smale’s point estimate theory under the \(\gamma \)-condition. IMA J. Numer. Anal. 26(2), 228–251 (2006)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Li, C., Wang, J.: Newton’s method for sections on Riemannian manifolds: generalized covariant \(\alpha \)-theory. J. Complexity 24(3), 423–451 (2008)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Li, C., Wang, J.-H., Dedieu, J.-P.: Smale’s point estimate theory for Newton’s method on Lie groups. J. Complex. 25(2), 128–151 (2009)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Manton, J.H.: A framework for generalising the Newton method and other iterative methods from Euclidean space to manifolds. Numer. Math. 129(1), 91–125 (2015)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Miller, S.A., Malick, J.: Newton methods for nonsmooth convex minimization: connections among U-Lagrangian, Riemannian Newton and SQP methods. Math. Program. 104((2–3, Ser. B)), 609–633 (2005)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Moser, J.: A new technique for the construction of solutions of nonlinear differential equations. Proc. Nat. Acad. Sci. USA. 47, 1824–1831 (1961)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Nash, J.: The imbedding problem for Riemannian manifolds. Ann. Math. 2(63), 20–63 (1956)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Nesterov, Y., Nemirovskii, A.: Interior-point Polynomial Algorithms in Convex Programming. SIAM Studies in Applied Mathematics, vol. 13. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1994)CrossRefMATHGoogle Scholar
  34. 34.
    Nesterov, Y.E., Todd, M.J.: On the Riemannian geometry defined by self-concordant barriers and interior-point methods. Found. Comput. Math. 2(4), 333–361 (2002)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Owren, B., Welfert, B.: The Newton iteration on Lie groups. BIT 40(1), 121–145 (2000)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Rapcsák, T.: Smooth Nonlinear Optimization in \({ R}^n\). Nonconvex Optimization and its Applications, vol. 19. Kluwer Academic Publishers, Dordrecht (1997)CrossRefMATHGoogle Scholar
  37. 37.
    Ring, W., Wirth, B.: Optimization methods on Riemannian manifolds and their application to shape space. SIAM J. Optim. 22(2), 596–627 (2012)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Schulz, V.H.: A Riemannian view on shape optimization. Found. Comput. Math. 14(3), 483–501 (2014)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Shub, M.: Some remarks on dynamical systems and numerical analysis. In: Lava-Carrero, L., Lewowicz J. (eds.) Dynamical Systems and Partial Differential Equations, pp. 69–91. Universidad Simon Bolivar, Caracas (1986)Google Scholar
  40. 40.
    Smale, S.: Newton’s method estimates from data at one point. In: Ewing, R.E., Gross, K.I., Martin, C.F. (eds.) The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics, pp. 185–196. Springer, New York (1986)Google Scholar
  41. 41.
    Smith, S.T.: Optimization techniques on Riemannian manifolds. In: Bloch, A. (ed.) Fields Institute Communications. Hamiltonian and Gradient Flows, Algorithms and Control, vol. 3, pp. 113–136. American Mathematical Society, Providence (1994)Google Scholar
  42. 42.
    Udrişte, C.: Convex Functions and Optimization Methods on Riemannian Manifolds. Mathematics and its Applications, vol. 297. Kluwer Academic Publishers Group, Dordrecht (1994)CrossRefMATHGoogle Scholar
  43. 43.
    Wang, J.H.: Convergence of Newton’s method for sections on Riemannian manifolds. J. Optim. Theory Appl. 148(1), 125–145 (2011)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Wang, J.-H., Huang, S., Li, C.: Extended Newton’s method for mappings on Riemannian manifolds with values in a cone. Taiwan. J. Math. 13(2B), 633–656 (2009)MathSciNetMATHGoogle Scholar
  45. 45.
    Wang, J.-H., Yao, J.-C., Li, C.: Gauss-Newton method for convex composite optimizations on Riemannian manifolds. J. Global Optim. 53(1), 5–28 (2012)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Wayne, C.E.: An introduction to KAM theory. In: Wayne,C.E., Levermore C.D. (eds.) Lectures in Applied Mathematics. Dynamical Systems and Probabilistic Methods in Partial Differential Equations, vol. 31, pp. 3–29. American Mathematical Society, Providence (1996)Google Scholar
  47. 47.
    Wen, Z., Yin, W.: A feasible method for optimization with orthogonality constraints. Math. Program. 142(1–2, Ser. A), 397–434 (2013)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Zabrejko, P.P., Nguen, D.F.: The majorant method in the theory of Newton-Kantorovich approximations and the Pták error estimates. Numer. Funct. Anal. Optim. 9(5–6), 671–684 (1987)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Zhang, L.-H.: Riemannian Newton method for the multivariate eigenvalue problem. SIAM J. Matrix Anal. Appl. 31(5), 2972–2996 (2010)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.IME/UFGGoiâniaBrazil

Personalised recommendations