Skip to main content
Log in

Universal rigidity of bar frameworks via the geometry of spectrahedra

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A bar framework (Gp) in dimension r is a graph G whose nodes are points \(p^1,\ldots ,p^n\) in \(\mathbb {R}^r\) and whose edges are line segments between pairs of these points. Two frameworks (Gp) and (Gq) are equivalent if each edge of (Gp) has the same (Euclidean) length as the corresponding edge of (Gq). A pair of non-adjacent vertices i and j of (Gp) is universally linked if \(||p^i-p^j||\) = \(||q^i-q^j||\) in every framework (Gq) that is equivalent to (Gp). Framework (Gp) is universally rigid iff every pair of non-adjacent vertices of (Gp) is universally linked. In this paper, we present a unified treatment of the universal rigidity problem based on the geometry of spectrahedra. A spectrahedron is the intersection of the positive semidefinite cone with an affine space. This treatment makes it possible to tie together some known, yet scattered, results and to derive new ones. Among the new results presented in this paper are: (1) The first sufficient condition for a given pair of non-adjacent vertices of (Gp) to be universally linked. (2) A new, weaker, sufficient condition for a framework (Gp) to be universally rigid thus strengthening the existing known condition. An interpretation of this new condition in terms of the Strong Arnold Property is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alfakih, A.Y.: Graph rigidity via Euclidean distance matrices. Linear Algebra Appl. 310, 149–165 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alfakih, A.Y.: On dimensional rigidity of bar-and-joint frameworks. Discrete Appl. Math. 155, 1244–1253 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alfakih, A.Y.: On the universal rigidity of generic bar frameworks. Contrib. Disc. Math. 5, 7–17 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Alfakih, A.Y.: On bar frameworks, stress matrices and semidefinite programming. Math. Program. Ser. B 129, 113–128 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alfakih, A.Y., Khandani, A., Wolkowicz, H.: Solving Euclidean distance matrix completion problems via semidefinite programming. Comput. Optim. Appl. 12, 13–30 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alfakih, A.Y., Nyugen, V.-H.: On affine motions and universal rigidity of tensegrity frameworks. Linear Algebra Appl. 439, 3134–3147 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alfakih, A.Y., Taheri, N., Ye, Y.: On stress matrices of (\(d+1\))-lateration frameworks in general position. Math. Program. 137, 1–17 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Alfakih, A.Y., Ye, Y.: On affine motions and bar frameworks in general positions. Linear Algebra Appl. 438, 31–36 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Alizadeh, F., Haeberly, J.A., Overton, M.L.: Complementarity and nondegeneracy in semidefinite programming. Math. Program. Ser. B 77, 111–128 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Barker, G.P., Carlson, D.: Cones of diagonally dominant matrices. Pac. J. Math. 57, 15–31 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Connelly, R.: Rigidity and energy. Invent. Math. 66, 11–33 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Connelly, R.: Generic global rigidity. Discrete Comput. Geom. 33, 549–563 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Connelly, R., Gortler, S.J.: Iterative universal rigidity. Discrete Comput. Geom. 53, 847–877 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Critchley, F.: On certain linear mappings between inner-product and squared distance matrices. Linear Algebra Appl. 105, 91–107 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gale, D.: Neighboring vertices on a convex polyhedron. In Linear inequalities and related system, pp 255–263. Princeton University Press, Princeton(1956)

  16. Gortler, S.J., Thurston, D.P.: Characterizing the universal rigidity of generic frameworks. Discrete Comput. Geom. 51, 1017–1036 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gower, J.C.: Properties of Euclidean and non-Euclidean distance matrices. Linear Algebra Appl. 67, 81–97 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grünbaum, B.: Convex polytopes. Wiley, New York (1967)

    MATH  Google Scholar 

  19. Jordán, T., Nguyen, V.-H.: On universally rigid frameworks on the line. Technical report, Egerváry Research Group (2012)

  20. Laurent, M., Varvitsiotis, A.: Positive semidefinite matrix completion, universal rigidity and the strong Arnold property. Linear Algebra Appl. 452, 292–317 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pataki, G.: The geometry of semidefinite programing. In: Wolkowicz, H., Saigal, R., Vandenberghe, L., (eds.) Handbook of Semidefinite Programming: Theory, Algorithms and Applications, pp. 29–65. Kluwer Academic publishers (2000)

  22. Ramana, M., Goldman, A.J.: Some geometric results in semi-definite programming. J. Glob. Optim. 7, 33–50 (1995)

    Article  MATH  Google Scholar 

  23. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  24. Schoenberg, I.J.: Remarks to Maurice Fréchet’s article: Sur la définition axiomatique d’une classe d’espaces vectoriels distanciés applicables vectoriellement sur l’espace de Hilbert. Ann. Math. 36, 724–732 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  25. Young, G., Householder, A.S.: Discussion of a set of points in terms of their mutual distances. Psychometrika 3, 19–22 (1938)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank the referees for their comments which improved the presentation of the paper. In particular we would like to thank referee 2 for useful insights and for suggesting an alternative proof of Theorem 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Y. Alfakih.

Additional information

Research supported by the Natural Sciences and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfakih, A.Y. Universal rigidity of bar frameworks via the geometry of spectrahedra. J Glob Optim 67, 909–924 (2017). https://doi.org/10.1007/s10898-016-0448-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-016-0448-y

Keywords

Mathematics Subject Classification

Navigation