Adhya, N., Tawarmalani, M., Sahinidis, N.: A Lagrangian approach to the pooling problem. Ind. Eng. Chem. Res. 38(5), 1956–1972 (1999)
Article
Google Scholar
Al-Khayyal, F., Falk, J.: Jointly constrained biconvex programming. Math. Oper. Res. 8(2), 273–286 (1983)
MathSciNet
Article
MATH
Google Scholar
Alfaki, M., Haugland, D.: A cost minimization heuristic for the pooling problem. Ann. Oper. Res. 222(1), 73–87 (2013a)
MathSciNet
Article
MATH
Google Scholar
Alfaki, M., Haugland, D.: A multi-commodity flow formulation for the generalized pooling problem. J. Glob. Optim. 56(3), 917–937 (2013b)
MathSciNet
Article
MATH
Google Scholar
Alfaki, M., Haugland, D.: Strong formulations for the pooling problem. J. Glob. Optim. 56(3), 897–916 (2013c)
MathSciNet
Article
MATH
Google Scholar
Almutairi, H., Elhedhli, S.: A new Lagrangean approach to the pooling problem. J. Glob. Optim. 45(2), 237–257 (2009)
MathSciNet
Article
MATH
Google Scholar
Audet, C., Brimberg, J., Hansen, P., Le Digabel, S., Mladenović, N.: Pooling problem: alternate formulations and solution methods. Manag. Sci. 50(6), 761–776 (2004)
Article
MATH
Google Scholar
Audet, C., Hansen, P., Jaumard, B., Savard, G.: A symmetrical linear maxmin approach to disjoint bilinear programming. Math. Program. 85(3), 573–592 (1999)
MathSciNet
Article
MATH
Google Scholar
Baker, T., Lasdon, L.: Successive linear programming at Exxon. Manag. Sci. 31(3), 264–274 (1985)
Article
MATH
Google Scholar
Bao, X., Sahinidis, N., Tawarmalani, M.: Multiterm polyhedral relaxations for nonconvex, quadratically constrained quadratic programs. Optim. Methods Softw. 24(4–5), 485–504 (2009)
MathSciNet
Article
MATH
Google Scholar
Bao, X., Sahinidis, N., Tawarmalani, M.: Semidefinite relaxations for quadratically constrained quadratic programming: a review and comparisons. Math. Program. 129(1), 129–157 (2011)
MathSciNet
Article
MATH
Google Scholar
Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear optimization. Acta Numer. 22, 1–131 (2013)
MathSciNet
Article
MATH
Google Scholar
Ben-Tal, A., Eiger, G., Gershovitz, V.: Global minimization by reducing the duality gap. Math. Program. 63(1), 193–212 (1994)
MathSciNet
Article
MATH
Google Scholar
Biegler, L., Grossmann, I., Westerberg, A.: Systematic methods for chemical process design. In: International Series in the Physical and Chemical Engineering Sciences. Prentice Hall (1997)
Bley, A., Boland, N., Froyland, G., Zuckerberg, M.: Solving mixed integer nonlinear programming problems for mine production planning with stockpiling (2012). http://www.optimization-online.org/DB_HTML/2012/11/3674.html
Bodington, C., Baker, T.: A history of mathematical programming in the petroleum industry. Interfaces 20(4), 117–127 (1990)
Article
Google Scholar
Boland, N., Kalinowski, T., Rigterink, F.: New multi-commodity flow formulations for the pooling problem. J. Glob. Optim (2015). doi:10.1007/s10898-016-0404-x
Burer, S., Letchford, A.N.: Non-convex mixed-integer nonlinear programming: a survey. Surv. Oper. Res. Manag. Sci. 17(2), 97–106 (2012)
MathSciNet
Google Scholar
Burer, S., Saxena, A.: The MILP road to MIQCP. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming, IMA Volumes in Mathematics and its Applications, vol. 154, pp. 373–405. Springer, Berlin (2012)
Chapter
Google Scholar
Crama, Y.: Concave extensions for nonlinear 0–1 maximization problems. Math. Program. 61(1–3), 53–60 (1993)
MathSciNet
Article
MATH
Google Scholar
D’Ambrosio, C., Linderoth, J., Luedtke, J.: Valid inequalities for the pooling problem with binary variables. In: Günlük, O., Woeginger, G. (eds.) Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science, vol. 6655, pp. 117–129. Springer (2011)
Dey, S., Gupte, A.: Analysis of MILP techniques for the pooling problem. Oper. Res. 63(2), 412–427 (2015)
MathSciNet
Article
MATH
Google Scholar
Floudas, C., Aggarwal, A.: A decomposition strategy for global optimum search in the pooling problem. ORSA J. Comput. 2(3), 225–235 (1990)
Article
MATH
Google Scholar
Foulds, L., Haugland, D., Jörnsten, K.: A bilinear approach to the pooling problem. Optimization 24(1), 165–180 (1992)
MathSciNet
Article
MATH
Google Scholar
Frimannslund, L., El Ghami, M., Alfaki, M., Haugland, D.: Solving the pooling problem with LMI relaxations. In: TOGO10—global optimization workshop, pp. 51–54 (2010)
Frimannslund, L., Gundersen, G., Haugland, D.: Sensitivity analysis applied to the pooling problem. Tech. Rep. 380, University of Bergen (2008)
Furman, K., Androulakis, I.: A novel MINLP-based representation of the original complex model for predicting gasoline emissions. Comp. Chem. Eng. 32(12), 2857–2876 (2008)
Article
Google Scholar
Gounaris, C., Misener, R., Floudas, C.: Computational comparison of piecewise-linear relaxations for pooling problems. Ind. Eng. Chem. Res. 48(12), 5742–5766 (2009)
Article
Google Scholar
Greenberg, H.: Analyzing the pooling problem. ORSA J. Comput. 7(2), 205–217 (1995)
Article
MATH
Google Scholar
Günlük, O., Lee, J., Leung, J.: A polytope for a product of real linear functions in 0/1 variables. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming, IMA Volumes in Mathematics and its Applications, vol. 154, pp. 513–529. Springer, Berlin (2012)
Chapter
Google Scholar
Gupte, A.: Mixed integer bilinear programming with applications to the pooling problem. Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA (2012). https://smartech.gatech.edu/handle/1853/45761
Gupte, A.: Bilinear programming with simplicial constraints (2016a). Working paper. http://people.clemson.edu/~agupte/BilinSimpl.pdf
Gupte, A.: Convex hulls of superincreasing knapsacks and lexicographic orderings. Discrete Appl. Math. 201, 150–163 (2016b)
MathSciNet
Article
MATH
Google Scholar
Gupte, A., Ahmed, S., Cheon, M., Dey, S.: Solving mixed integer bilinear problems using MILP formulations. SIAM J. Optim. 23(2), 721–744 (2013)
MathSciNet
Article
MATH
Google Scholar
Hasan, M., Karimi, I.: Piecewise linear relaxation of bilinear programs using bivariate partitioning. AIChE J. 56(7), 1880–1893 (2010)
Article
Google Scholar
Haugland, D.: The computational complexity of the pooling problem. J. Glob. Optim. 1–17 (2015). doi:10.1007/s10898-015-0335-y
Haverly, C.: Studies of the behavior of recursion for the pooling problem. ACM SIGMAP Bull. 25, 19–28 (1978)
Article
Google Scholar
Kallrath, J.: Solving planning and design problems in the process industry using mixed integer and global optimization. Ann. Oper. Res. 140(1), 339–373 (2005)
MathSciNet
Article
MATH
Google Scholar
Karuppiah, R., Furman, K., Grossmann, I.: Global optimization for scheduling refinery crude oil operations. Comput. Chem. Eng. 32(11), 2745–2766 (2008)
Article
Google Scholar
Karuppiah, R., Grossmann, I.: Global optimization for the synthesis of integrated water systems in chemical processes. Comput. Chem. Eng. 30(4), 650–673 (2006)
Article
Google Scholar
Kim, S., Kojima, M.: Second order cone programming relaxation of nonconvex quadratic optimization problems. Optim. Methods Softw. 15(3–4), 201–224 (2001)
MathSciNet
Article
MATH
Google Scholar
Kolodziej, S.P., Grossmann, I.E., Furman, K.C., Sawaya, N.W.: A discretization-based approach for the optimization of the multiperiod blend scheduling problem. Comput. Chem. Eng. 53, 122–142 (2013)
Article
Google Scholar
Lee, S., Grossmann, I.: Global optimization of nonlinear generalized disjunctive programming with bilinear equality constraints: applications to process networks. Comput. Chem. Eng. 27(11), 1557–1575 (2003)
Article
Google Scholar
Li, X., Armagan, E., Tomasgard, A., Barton, P.I.: Stochastic pooling problem for natural gas production network design and operation under uncertainty. AIChE J. 57(8), 2120–2135 (2011)
Article
Google Scholar
Li, X., Tomasgard, A., Barton, P.I.: Decomposition strategy for the stochastic pooling problem. J. Glob. Optim. 54(4), 765–790 (2012)
MathSciNet
Article
MATH
Google Scholar
Liberti, L., Pantelides, C.: An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms. J. Glob. Optim. 36(2), 161–189 (2006)
MathSciNet
Article
MATH
Google Scholar
Luedtke, J., Namazifar, M., Linderoth, J.: Some results on the strength of relaxations of multilinear functions. Math. Program. 136(2), 325–351 (2012)
MathSciNet
Article
MATH
Google Scholar
Marcotte, O.: The cutting stock problem and integer rounding. Math. Program. 33(1), 82–92 (1985)
MathSciNet
Article
MATH
Google Scholar
McCormick, G.: Computability of global solutions to factorable nonconvex programs: part I. convex underestimating problems. Math. Program. 10(1), 147–175 (1976)
Article
MATH
Google Scholar
Meyer, C., Floudas, C.: Global optimization of a combinatorially complex generalized pooling problem. AIChE J. 52(3), 1027–1037 (2006)
Article
Google Scholar
Misener, R., Floudas, C.: Advances for the pooling problem: modeling, global optimization, and computational studies. Appl. Comput. Math. 8(1), 3–22 (2009)
MathSciNet
MATH
Google Scholar
Misener, R., Floudas, C.: Global optimization of large-scale generalized pooling problems: quadratically constrained MINLP models. Ind. Eng. Chem. Res. 49(11), 5424–5438 (2010)
Article
Google Scholar
Misener, R., Gounaris, C., Floudas, C.: Mathematical modeling and global optimization of large-scale extended pooling problems with the (EPA) complex emissions constraints. Comput. Chem. Eng. 34(9), 1432–1456 (2010)
Article
Google Scholar
Misener, R., Smadbeck, J.B., Floudas, C.A.: Dynamically generated cutting planes for mixed-integer quadratically constrained quadratic programs and their incorporation into GloMIQO 2. Optim. Methods Softw. 30(1), 215–249 (2015)
MathSciNet
Article
MATH
Google Scholar
Misener, R., Thompson, J., Floudas, C.: APOGEE: Global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes. Comput. Chem. Eng. 35, 876–892 (2011)
Article
Google Scholar
Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization, Discrete Mathematics and Optimization, vol. 18. Wiley-Interscience, London (1988)
MATH
Google Scholar
Nishi, T.: A semidefinite programming relaxation approach for the pooling problem. Master’s thesis, Department of Applied Mathematics and Physics, Kyoto University (2010). http://www-optima.amp.i.kyoto-u.ac.jp/result/masterdoc/21nishi.pdf
Pham, V., Laird, C., El-Halwagi, M.: Convex hull discretization approach to the global optimization of pooling problems. Ind. Eng. Chem. Res. 48(4), 1973–1979 (2009)
Article
Google Scholar
Quesada, I., Grossmann, I.: Global optimization of bilinear process networks with multicomponent flows. Comput. Chem. Eng. 19(12), 1219–1242 (1995)
Article
Google Scholar
Realff, M., Ahmed, S., Inacio, H., Norwood, K.: Heuristics and upper bounds for a pooling problem with cubic constraints. In: Foundations of Computer-Aided Process Operations. Savannah, GA (2012). http://focapo.cheme.cmu.edu/2012/proceedings/data/papers/056.pdf
Rikun, A.: A convex envelope formula for multilinear functions. J. Glob. Optim. 10(4), 425–437 (1997)
MathSciNet
Article
MATH
Google Scholar
Ruiz, J., Grossmann, I.: Exploiting vector space properties to strengthen the relaxation of bilinear programs arising in the global optimization of process networks. Optim. Lett. 5(1), 1–11 (2011)
MathSciNet
Article
MATH
Google Scholar
Ruiz, M., Briant, O., Clochard, J., Penz, B.: Large-scale standard pooling problems with constrained pools and fixed demands. J. Glob. Optim. 56(3), 939–956 (2013)
MathSciNet
Article
MATH
Google Scholar
Sherali, H., Adams, W.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems, Nonconvex Optimization and its Applications, vol. 31. Kluwer Academic Publishers, Dordrecht (1998)
Google Scholar
Sherali, H.D.: Convex envelopes of multilinear functions over a unit hypercube and over special discrete sets. Acta Math. Vietnam. 22(1), 245–270 (1997)
MathSciNet
MATH
Google Scholar
Smith, E.M., Pantelides, C.C.: A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex minlps. Comput. Chem. Eng. 23(4), 457–478 (1999)
Article
Google Scholar
Tardella, F.: Existence and sum decomposition of vertex polyhedral convex envelopes. Optim. Lett. 2(3), 363–375 (2008)
MathSciNet
Article
MATH
Google Scholar
Tawarmalani, M., Sahinidis, N.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Kluwer Academic Publishers, Dordrecht (2002)
Book
MATH
Google Scholar
Vielma, J., Nemhauser, G.: Modeling disjunctive constraints with a logarithmic number of binary variables and constraints. Math. Program. 128, 49–72 (2011)
MathSciNet
Article
MATH
Google Scholar
Visweswaran, V.: MINLP: applications in blending and pooling problems. In: Floudas, C., Pardalos, P. (eds.) Encyclopedia of Optimization, pp. 2114–2121. Springer, Berlin (2009)
Chapter
Google Scholar