Abstract
This work considers a parallel algorithm for solving multidimensional multiextremal optimization problems. This algorithm uses Peano-type space filling curves for dimension reduction. Conditions of non-redundant parallelization of the algorithm are considered. Efficiency of the algorithm on modern computing systems with the use of graphics processing units (GPUs) is investigated. Speedup of the algorithm using GPU as compared with the same algorithm implemented on CPU only is demonstrated experimentally. Computational experiments are carried out on a series of several hundred multidimensional multiextremal problems.
This is a preview of subscription content, access via your institution.




References
Pinter, J.D. (ed.): Global Optimization: Scientific and Engineering Case Studies. Springer, New York (2006)
Hwu, W.: GPU Computing Gems Emerald Edition (Applications of GPU Computing Series). Morgan Kaufmann, San Francisco (2011)
D’Apuzzo, M., Marino, M., Migdalas, A., Pardalos, P.M., Toraldo, G.: Parallel computing in global optimization. In: Handbook of Parallel Computing and Statistics. Chapman & Hall, London, pp. 225–258 (2006)
Ferreiro, A.M., Garcia, J.A., Lopez-Salas, J.G., Vazquez, C.: An efficient implementation of parallel simulated annealing algorithm in GPUs. J. Glob. Optim. 57(3), 863–890 (2013)
Zhu, W.: Massively parallel differential evolution-pattern search optimization with graphics hardware acceleration: an investigation on bound constrained optimization problems. J. Glob. Optim. 50(3), 417–437 (2011)
Garcia-Martinez, J.M., Garzon, E.M., Ortigosa, P.M.: A GPU implementation of a hybrid evolutionary algorithm: GPuEGO. J. Supercomput. (2014). doi:10.1007/s11227-014-1136-7
Mussi, L., et al.: GPU implementation of a road sign detector based on particle swarm optimization. Evol. Intel. 3(3), 155–169 (2010)
Langdon, W.B.: Graphics processing units and genetic programming: an overview. Soft. Comput. 15(8), 1657–1669 (2011)
Gergel, V.P., Strongin, R.G.: Parallel computing for globally optimal decision making on cluster systems. Future Gener. Comput. Syst. 21(5), 673–678 (2005)
Evtushenko, YuG, Malkova, V.U., Stanevichyus, A.A.: Parallel global optimization of functions of several variables. Comput. Math. Math. Phys. 49(2), 246–260 (2009)
He, J., Verstak, A., Watson, L.T., Sosonkina, M.: Design and implementation of a massively parallel version of DIRECT. Comput. Optim. Appl. 40(2), 217–245 (2008)
Paulavicius, R., Zilinskas, J., Grothey, A.: Parallel branch and bound for global optimization with combination of Lipschitz bounds. Optim. Methods Softw. 26(3), 487–498 (2011)
Boukedjar A., Lalami M. E., El Baz D.: Parallel branch and bound on a CPU–GPU system. In: 20th International Conference on Parallel, Distributed and Network-Based Processing, pp. 392–398 (2012)
Carneiro, T. et al.: A new parallel schema for branch-and-bound algorithms using GPGPU. In: 23rd International Symposium on Computer Architecture and High Performance Computing, pp. 41–47 (2011)
Kindratenko, V. (ed.): Numerical Computations with GPUs. Springer, New York (2014)
Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints. Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)
Lebedev, I.G., Barkalov, K.A.: A GPU implementation of a parallel global search algorithm. PNRPU Aerosp. Eng. Bull. 36, 64–82 (2014). (in Russian)
Sergeyev, YaD, Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim 16(3), 910–937 (2006)
Zilinskas, J.: Branch and bound with simplicial partitions for global optimization. Math. Model. Anal. 13(1), 145–159 (2008)
Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. Springer, New York (2013)
Molinaro, A., Pizzuti, C., Sergeyev, YaD: Acceleration tools for diagonal information global optimization algorithms: Comput. Optim. Appl. 18, 5–26 (2001)
Barkalov, K.A., Strongin, R.G.: A global optimization technique with an adaptive order of checking for constraints. Comput. Math. Math. Phys. 42(9), 1289–1300 (2002)
Gergel, V.P.: A method of using derivatives in the minimization of multiextremum functions. Comput. Math. Math. Phys. 36(6), 729–742 (1996)
Gergel, V.P.: A global optimization algorithm for multivariate functions with lipschitzian first derivatives. J. Glob. Optim. 10(3), 257–281 (1997)
Sergeyev, YaD, Grishagin, V.A.: A parallel method for finding the global minimum of univariate functions. J. Optim. Theory Appl. 80(3), 513–536 (1994)
Sergeyev, YaD, Grishagin, V.A.: Sequential and parallel global optimization algorithms. Optim. Methods Softw. 3, 111–124 (1994)
Grishagin, V.A., Sergeyev, YaD, Strongin, R.G.: Parallel characteristical algorithms for solving problems of global optimization. J. Glob. Optim. 10(2), 185–206 (1997)
Sergeyev, YaD, Grishagin, V.A.: Parallel asynchronous global search and the nested optimization scheme. J. Comput. Anal. Appl. 3(2), 123–145 (2001)
Gergel, V.P., Sergeyev, YaD: Sequential and parallel algorithms for global minimizing functions with Lipschitzian derivatives. Comput. Math. Appl. 37(4–5), 163–179 (1999)
Strongin, R.G., Sergeyev, YaD: Global optimization: fractal approach and non-redundant parallelism. J. Glob. Optim. 27(1), 25–50 (2003)
Barkalov, K., Polovinkin, A., Meyerov, I., Sidorov, S., Zolotykh, N.: SVM regression parameters optimization using parallel global search algorithm. In: Lecture Notes in Computer Science, vol. 7979, pp. 154–166 (2013)
Gaviano, M., Lera, D., Kvasov, D.E., Sergeyev, YaD: Software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 29, 469–480 (2003)
Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)
Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. Glob. Optim. 21(1), 27–37 (2001)
Acknowledgments
The authors of the paper express their gratitude to Ilya Lebedev for assistance in carrying out the computational experiments.
Author information
Authors and Affiliations
Corresponding author
Additional information
The revised version of the paper was supported by the Russian Science Foundation, Project No 15-11-30022 “Global optimization, supercomputing computations, and applications”.
Rights and permissions
About this article
Cite this article
Barkalov, K., Gergel, V. Parallel global optimization on GPU. J Glob Optim 66, 3–20 (2016). https://doi.org/10.1007/s10898-016-0411-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-016-0411-y