Skip to main content
Log in

A sharp Lagrange multiplier theorem for nonlinear programs

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

For a nonlinear program with inequalities and under a Slater constraint qualification, it is shown that the duality between optimal solutions and saddle points for the corresponding Lagrangian is equivalent to the infsup-convexity—a not very restrictive generalization of convexity which arises naturally in minimax theory—of a finite family of suitable functions. Even if we dispense with the Slater condition, it is proven that the infsup-convexity is nothing more than an equivalent reformulation of the Fritz John conditions for the nonlinear optimization problem under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arrow, K.J., Enthoven, A.C.: Quasi-concave programming. Econometrica 29, 779–800 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borwein, J.M., Zhu, J.Q.: Techniques of Variational Analysis, CMS Books in Mathematics/Ouvrages de Mathèmatiques de la SMC 20. Springer, New York (2005)

    Google Scholar 

  3. Brezhnevaa, O., Tret’yakov, A.A.: An elementary proof of the Karush–Kuhn–Tucker theorem in normed linear spaces for problems with a finite number of inequality constraints. Optimization 60, 613–618 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chieu, N.H., Lee, G.M.: Constraint qualifications for mathematical programs with equilibrium constraints and their local preservation property. J Optim Theory Appl 163, 755–776 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dăneţ, N., Dăneţ, R.M.: Existence and extensions of positive linear operators. Positivity 13, 89–106 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dinh, N., Goberna, M.A., López, M.A., Mo, T.H.: From the Farkas lemma to the Hahn–Banach theorem. SIAM J. Optim. 24, 678–701 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ekeland, I., Témam, R.: Convex analysis and variational problems, corrected reprint of the 1976 English edition, classics in applied mathematics 28, society for industrial and applied mathematics (SIAM), Philadelphia (1999)

  8. Fan, K.: Minimax theorems. Proc. Natl. Acad. Sci. USA 39, 42–47 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fang, D., Luo, X., Wang, X.: Strong and total lagrange dualities for quasiconvex programming, J. Appl. Math. 8, (2014), Article ID 453912

  10. Flores-Bazán, F.: Fritz John necessary optimality conditions of the alternative-type. J. Optim. Theory Appl. 161, 807–818 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Giorgi, G., Kjeldsen, T.H.: Traces and Emergence of Nonlinear Programming. Birkhäuser/Springer Basel AG, Basel (2014)

    Book  MATH  Google Scholar 

  12. Guerraggio, A., Molho, E.: The origins of quasi-concavity: a development between mathematics and economics. Hist. Math. 31, 62–75 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hayasi, M., Komiya, H.: Perfect duality for convexlike programs. J. Optim. Theory Appl. 38, 179–189 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Illés, T., Kassay, G.: Theorems of the alternative and optimality conditions for convexlike and general convexlike programming. J. Optim. Theory Appl. 101, 243–257 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ito, K., Kunisch, K.: Karush–Kuhn–Tucker conditions for nonsmooth mathematical programming problems in function spaces. SIAM J. Control Optim. 49, 2133–2154 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. John, F.: Extremum problems with inequalities as subsidiary conditions, Studies and Essays Presented to R. Courant on his 60th Birthday, pp. 187–204. Interscience Publishers Inc, New York (1948)

  17. Kassay, G., Kolumbán, J.: On a generalized sup-inf problem. J. Optim. Theory Appl. 91, 651–670 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Karush, W.: Minima of functions of several variables with inequalities as side conditions, M.Sc. Thesis, Department of Mathematics, University of Chicago (1939)

  19. König, H.: Sublinear functionals and conical measures. Archiv der Mathematik 77, 56–64 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kruger, A.Y., Minchenko, L., Outrata, J.V.: On relaxing the Mangasarian–Fromovitz constraint qualification. Positivity 18, 171–189 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kuhn, H.W., Tucker, A.W.: Nonlinear programming, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, pp. 481–492. University of California Press, Berkeley and Los Angeles (1951)

  22. Mangasarian, O.L., Fromovitz, S.: The Fritz John necessary optimality conditions in the presence of equality and inequality constraints. J. Math. Anal. Appl. 17, 37–47 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mazur, S., Orlicz, W.: Sur les espaces métriques linéaires II. Stud. Math. 13, 137–179 (1953)

    MathSciNet  MATH  Google Scholar 

  24. Rabier, P.J.: Quasiconvexity and density topology. Can. Math. Bull. 57, 178–187 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rockafellar, R.T.: Convex analysis. Reprint of the 1970 original, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ (1997)

  26. Ruiz Galán, M.: An intrinsic notion of convexity for minimax. J. Convex Anal. 21, 1105–1139 (2014)

  27. Ruiz Galán, M.: The Gordan theorem and its implications for minimax theory, submitted

  28. Simons, S.: From Hahn–Banach to monotonicity, 2nd edn. Lecture Notes in Mathematics 1693, Springer, New York (2008)

  29. Simons, S.: The Hahn–Banach–Lagrange theorem. Optimization 56, 149–169 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Simons, S.: Minimax and monotonicity, Lecture Notes in Mathematics 1693. Springer, Berlin (1998)

  31. Simons, S.: Maximinimax, minimax, and antiminimax theorems and a result of R.C. James. Pac. J. Math. 40, 709–718 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  32. Slater, M.: Lagrange multipliers revisited, Cowles Commission Discussion Paper 403, (1950)

  33. Stefanescu, A.: A theorem of the alternative and a two-function minimax theorem. J. Appl. Math. 2004, 167–177 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Suzuki, S., Kuroiwa, D.: Optimality conditions and the basic constraint qualification for quasiconvex programming. Nonlinear Anal. 74, 1279–1285 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Uzawa, H.: The Kuhn-Tucker theorem in concave programming. In: Arrow, K.J., Hurwicz, L., Uzawa, H. (eds.) Studies in Linear and Nonlinear Programming, pp. 32–37. Stanford University Press, Stanford (1958)

    Google Scholar 

  36. Zeng, R.: A general Gordan alternative theorem with weakened convexity and its application. Optimization 51, 709–717 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Research partially supported by Junta de Andalucía Grant FQM359 and FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ruiz Galán.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galán, M.R. A sharp Lagrange multiplier theorem for nonlinear programs. J Glob Optim 65, 513–530 (2016). https://doi.org/10.1007/s10898-015-0379-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0379-z

Keywords

Mathematics Subject Classification

Navigation