Skip to main content
Log in

On Slater’s condition and finite convergence of the Douglas–Rachford algorithm for solving convex feasibility problems in Euclidean spaces

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The Douglas–Rachford algorithm is a classical and very successful method for solving optimization and feasibility problems. In this paper, we provide novel conditions sufficient for finite convergence in the context of convex feasibility problems. Our analysis builds upon, and considerably extends, pioneering work by Spingarn. Specifically, we obtain finite convergence in the presence of Slater’s condition in the affine-polyhedral and in a hyperplanar-epigraphical case. Various examples illustrate our results. Numerical experiments demonstrate the competitiveness of the Douglas–Rachford algorithm for solving linear equations with a positivity constraint when compared to the method of alternating projections and the method of reflection–projection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Recall that a cone K is pointed if \(K\cap (-K)\subseteq \{0\}\).

  2. Recall that a set is polyhedral if it is a finite intersection of halfspaces.

  3. Recall that \(S:X\rightarrow X\) is skew if \(S^*=-S\).

References

  1. Bauschke, H.H., Bello Cruz, J.Y., Nghia, T.T.A., Phan, H.M., Wang, X.: The rate of linear convergence of the Douglas–Rachford algorithm for subspaces is the cosine of the Friedrichs angle. J. Approx. Theory 185, 63–79 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  3. Bauschke, H.H., Combettes, P.L., Luke, D.R.: Finding best approximation pairs relative to two closed convex sets in Hilbert spaces. J. Approx. Theory 127, 178–192 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauschke, H.H., Dao, M.N., Noll, D., Phan, H.M.: Proximal point algorithm, Douglas–Rachford algorithm and alternating projections: a case study. J. Convex Anal. 23 (2016)

  5. Bauschke, H.H., Kruk, S.G.: Reflection–projection method for convex feasibility problems with an obtuse cone. J. Optim. Theory Appl. 120, 503–531 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bauschke, H.H., Noll, D., Phan, H.M.: Linear and strong convergence of algorithms involving averaged nonexpansive operators. J. Math. Anal. Appl. 421, 1–20 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Borwein, J.M., Moors, W.B.: Stability of closedness of convex cones under linear mappings. J. Convex Anal. 16, 699–705 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Cegielski, A.: Iterative Methods for Fixed Point Problems in Hilbert Spaces. Springer, Berlin (2012)

    MATH  Google Scholar 

  9. Censor, Y., Zenios, S.A.: Parallel Optimization. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  10. Combettes, P.L.: Iterative construction of the resolvent of a sum of maximal monotone operators. J. Convex Anal. 16, 727–748 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. AMS 82, 421–439 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. GeoGebra software. http://www.geogebra.org

  14. Hesse, R., Luke, D.R.: Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems. SIAM J. Optim. 23, 2397–2419 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lawrence, J., Spingarn, J.E.: On fixed points of nonexpansive piecewise isometric mappings. Proc. Lond. Math. Soc. Third Ser. 55, 605–624 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Luque, F.J.: Asymptotic convergence analysis of the proximal point algorithm. SIAM J. Control Optim. 22, 277–293 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. MATLAB software. http://www.mathworks.com/products/matlab/

  19. Mahey, P., Oualibouch, S., Tao, P.D.: Proximal decomposition on the graph of a maximal monotone operator. SIAM J. Optim. 5, 454–466 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mordukhovich, B.S., Nam, N.M.: An easy path to convex analysis and applications. Morgan & Claypool Publishers, San Rafael (2014)

    MATH  Google Scholar 

  21. Phan, H.M.: Linear convergence of the Douglas–Rachford method for two closed sets. Optimization (2015). doi:10.1080/02331934.2015.1051532

  22. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  23. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  25. Spingarn, J.E.: Partial inverse of a monotone operator. Appl. Math. Optim. 10, 247–265 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  26. Spingarn, J.E.: A primal–dual projection method for solving systems of linear inequalities. Linear Algebra Appl. 65, 45–62 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank an anonymous referee for careful reading and constructive comments. H.H.B. was partially supported by the Natural Sciences and Engineering Research Council of Canada and by the Canada Research Chair Program. M.N.D. was partially supported by an NSERC accelerator grant of H.H.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz H. Bauschke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauschke, H.H., Dao, M.N., Noll, D. et al. On Slater’s condition and finite convergence of the Douglas–Rachford algorithm for solving convex feasibility problems in Euclidean spaces. J Glob Optim 65, 329–349 (2016). https://doi.org/10.1007/s10898-015-0373-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0373-5

Keywords

Mathematics Subject Classification

Navigation