Application of Reduced-set Pareto-Lipschitzian Optimization to truss optimization

Abstract

In this paper, a recently proposed global Lipschitz optimization algorithm Pareto-Lipschitzian Optimization with Reduced-set (PLOR) is further developed, investigated and applied to truss optimization problems. Partition patterns of the PLOR algorithm are similar to those of DIviding RECTangles (DIRECT), which was widely applied to different real-life problems. However here a set of all Lipschitz constants is reduced to just two: the maximal and the minimal ones. In such a way the PLOR approach is independent of any user-defined parameters and balances equally local and global search during the optimization process. An expanded list of other well-known DIRECT-type algorithms is used in investigation and experimental comparison using the standard test problems and truss optimization problems. The experimental investigation shows that the PLOR algorithm gives very competitive results to other DIRECT-type algorithms using standard test problems and performs pretty well on real truss optimization problems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    Bartholomew-Biggs, M.C., Parkhurst, S.C., Wilson, S.P.: Using DIRECT to solve an aircraft routing problem. Comput. Optim. Appl. 21(3), 311–323 (2002). doi:10.1023/A:1013729320435

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Carter, R.G., Gablonsky, J.M., Patrick, A., Kelley, C.T., Eslinger, O.J.: Algorithms for noisy problems in gas transmission pipeline optimization. Optim. Eng. 2(2), 139–157 (2001). doi:10.1023/A:1013123110266

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Choi, T.D., Eslinger, O.J., Gilmore, P., Patrick, A., Kelley, C.T., Gablonsky, J.M.: Iffco: implicit filtering for constrained optimization, version 2. Rep. CRSC-TR99, 23 (1999)

  4. 4.

    Cox, S.E., Haftka, R.T., Baker, C.A., Grossman, B., Mason, W.H., Watson, L.T.: A comparison of global optimization methods for the design of a high-speed civil transport. J. Glob. Optim. 21(4), 415–432 (2001). doi:10.1023/A:1012782825166

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Deb, K., Gulati, S.: Design of truss-structures for minimum weight using genetic algorithms. Finite Elem. Anal. Des. 37(5), 447–465 (2001). doi:10.1016/S0168-874X(00)00057-3

    Article  MATH  Google Scholar 

  6. 6.

    Figueira, J., Greco, S., Ehrgott, M.: Multiple Criteria Decision Analysis: State of the Art Surveys. Springer, Berlin (2004)

    MATH  Google Scholar 

  7. 7.

    Finkel, D.E.: DIRECT optimization algorithm user guide. Technical report, Center for Research in Scientific Computation. North Carolina State University, Raleigh, NC (2003)

  8. 8.

    Finkel, D.E.: Global optimization with the DIRECT algorithm. Ph.D. thesis, North Carolina State University (2005)

  9. 9.

    Finkel, D.E., Kelley, C.T.: Additive scaling and the DIRECT algorithm. J. Glob. Optim. 36, 597–608 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Gablonsky, J.M.: Modifications of the DIRECT algorithm. Ph.D. thesis, North Carolina State University, Raleigh, NC (2001)

  11. 11.

    Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. Glob. Optim. 21, 27–37 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Grbić, R., Nyarko, E.K., Scitovski, R.: A modification of the DIRECT method for Lipschitz global optimization for a symmetric function. J. Glob. Optim. 57(4), 1193–1212 (2013). doi:10.1007/s10898-012-0020-3

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    He, J., Verstak, A.A., Watson, L.T., Stinson, C.A., Ramakrishnan, N., Shaffer, C.A., Rappaport, T.S., Anderson, C.R., Bae, K.K., Jiang, J., et al.: Globally optimal transmitter placement for indoor wireless communication systems. IEEE Trans. Wirel. Commun. 3(6), 1906–1911 (2004)

    Article  Google Scholar 

  14. 14.

    Jones, D.R.: The DIRECT global optimization algorithm. In: Floudas, C.A., Pardalos, P.M. (eds.) The Encyclopedia of Optimization, pp. 431–440. Kluwer, Dordrect (2001)

    Google Scholar 

  15. 15.

    Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79, 157–181 (1993)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Kvasov, D.E., Sergeyev, Y.D.: A univariate global search working with a set of Lipschitz constants for the first derivative. Optim. Lett. 3(2), 303–318 (2009). doi:10.1007/s11590-008-0110-9

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Kvasov, D.E., Sergeyev, Y.D.: Lipschitz gradients for global optimization in a one-point-based partitioning scheme. J. Comput. Appl. Math. 236(16), 4042–4054 (2012). doi:10.1016/j.cam.2012.02.020

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Lera, D., Sergeyev, Y.D.: Deterministic global optimization using space-filling curves and multiple estimates of Lipschitz and Hölder constants. Commun. Nonlinear Sci. Numer. Simul. 23(1–3), 328–342 (2015). doi:10.1016/j.cnsns.2014.11.015

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Li, J.P.: Truss topology optimization using an improved species-conserving genetic algorithm. Eng. Optim. 47(1), 107–128 (2015). doi:10.1080/0305215X.2013.875165

    MathSciNet  Article  Google Scholar 

  20. 20.

    Li, L.J., Huang, Z.B., Liu, F., Wu, Q.H.: A heuristic particle swarm optimizer for optimization of pin connected structures. Comput. Struct. 85(7), 340–349 (2007)

    Article  Google Scholar 

  21. 21.

    Li, Y., Peng, Y., Zhou, S.: Improved pso algorithm for shape and sizing optimization of truss structure. J. Civ. Eng. Manag. 19(4), 542–549 (2013)

    Article  Google Scholar 

  22. 22.

    Liu, Q.: Linear scaling and the DIRECT algorithm. J. Glob. Optim. 56(3), 1233–1245 (2013). doi:10.1007/s10898-012-9952-x

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Liu, Q., Cheng, W.: A modified DIRECT algorithm with bilevel partition. J. Glob. Optim. 60(3), 483–499 (2014). doi:10.1007/s10898-013-0119-1

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Liuzzi, G., Lucidi, S., Piccialli, V.: A DIRECT-based approach exploiting local minimizations for the solution of large-scale global optimization problems. Comput. Optim. Appl. 45, 353–375 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Liuzzi, G., Lucidi, S., Piccialli, V.: A partition-based global optimization algorithm. J. Glob. Optim. 48, 113–128 (2010). doi:10.1007/s10898-009-9515-y

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Lu, Y.C., Jan, J.C., Hung, S.L., Hung, G.H.: Enhancing particle swarm optimization algorithm using two new strategies for optimizing design of truss structures. Eng. Optim. 45(10), 1251–1271 (2013). doi:10.1080/0305215X.2012.729054

    Article  Google Scholar 

  27. 27.

    Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)

    MATH  Google Scholar 

  28. 28.

    Mockus, J.: On the Pareto pptimality in the context of Lipschitzian optimization. Informatica 22(4), 521–536 (2011)

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Mockus, J., Paulavičius, R.: On the reduced-set Pareto–Lipschitzian optimization. Comput. Sci. Tech. 1(2), 184–192 (2013)

    Article  Google Scholar 

  30. 30.

    Pardalos, P.M., Siskos, Y. (eds.): Advances in Multi-criteria Analysis. Kluwer, Dordrecht (1995)

    Google Scholar 

  31. 31.

    Paulavičius, R., Sergeyev, Y.D., Kvasov, D.E., Žilinskas, J.: Globally-biased Disimpl algorithm for expensive global optimization. J. Glob. Optim. 59(2–3), 545–567 (2014). doi:10.1007/s10898-014-0180-4

    MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    Paulavičius, R., Žilinskas, J.: Advantages of simplicial partitioning for Lipschitz optimization problems with linear constraints. Optim. Lett. (2014). doi:10.1007/s11590-014-0772-4

    MATH  Google Scholar 

  33. 33.

    Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization Springer Briefs in Optimization. Springer, New York (2014). doi:10.1007/978-1-4614-9093-7

    Book  MATH  Google Scholar 

  34. 34.

    Paulavičius, R., Žilinskas, J.: Simplicial Lipschitz optimization without the Lipschitz constant. J. Glob. Optim. 59(1), 23–40 (2014). doi:10.1007/s10898-013-0089-3

    MathSciNet  Article  MATH  Google Scholar 

  35. 35.

    Perez, R., Behdinan, K.: Particle swarm approach for structural design optimization. Comput. Struct. 85(19), 1579–1588 (2007)

    Article  Google Scholar 

  36. 36.

    Schmit, L.A., Farshi, B.: Some approximation concepts for structural synthesis. AIAA J. 12(5), 692–699 (1974)

    Article  Google Scholar 

  37. 37.

    Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  38. 38.

    Tang, H., Li, F., Wang, Y., Xue, S., Cheng, R.: Particle swarm optimization algorithm for shape optimization of truss structures. J. Harbin Inst. Technol. 41(12), 94–99 (2009)

    Google Scholar 

  39. 39.

    Zhu, H., Bogy, D.B.: DIRECT algorithm and its application to slider air-bearing surface optimization. IEEE Trans. Magn. 38(5), 2168–2170 (2002)

    Article  Google Scholar 

  40. 40.

    Zhu, H., Bogy, D.B.: Hard disc drive air bearing design: modified DIRECT algorithm and its application to slider air bearing surface optimization. Tribol. Int. 37(2), 193–201 (2004)

    Article  Google Scholar 

  41. 41.

    Žilinskas, A.: On strong homogeneity of two global optimization algorithms based on statistical models of multimodal objective functions. Appl. Math. Comput. 218(16), 8131–8136 (2012). doi:10.1016/j.amc.2011.07.051

    MathSciNet  MATH  Google Scholar 

  42. 42.

    Žilinskas, J., Kvasov, D.E., Paulavičius, R., Sergeyev, Y.D.: Acceleration of simplicial-partition-based methods in Lipschitz global optimization. In: Gergel, V.P. (ed.) High-Performance Computing on Clusters, pp. 128–133. Nizhny Novgorod State University, Nizhny Novgorod (2013)

Download references

Acknowledgments

This research was funded by a grant (No. MIP-051/2014) from the Research Council of Lithuania.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Julius Žilinskas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mockus, J., Paulavičius, R., Rusakevičius, D. et al. Application of Reduced-set Pareto-Lipschitzian Optimization to truss optimization. J Glob Optim 67, 425–450 (2017). https://doi.org/10.1007/s10898-015-0364-6

Download citation

Keywords

  • Truss optimization
  • Lipschitz optimization
  • PLOR algorithm
  • DIRECT algorithm