Advertisement

Journal of Global Optimization

, Volume 64, Issue 3, pp 533–562 | Cite as

Second-order necessary optimality conditions for a discrete optimal control problem with mixed constraints

  • N. T. Toan
  • L. Q. Thuy
Article

Abstract

In this paper, we study second-order necessary optimality conditions for a discrete optimal control problem with nonconvex cost functions and state-control constraints. By establishing an abstract result on second-order necessary optimality conditions for a mathematical programming problem, we derive second-order necessary optimality conditions for a discrete optimal control problem.

Keywords

First-order necessary optimality condition Second-order necessary optimality condition Discrete optimal control problem Mixed Constraint 

Notes

Acknowledgments

In this research, we were partially supported by the NAFOSTED 101.01-2015.04 of National Foundation for Science & Technology Development (Vietnam) and by the Vietnam Institute for Advanced Study in Mathematics (VIASM).

References

  1. 1.
    Arutyunov, A.V., Marinkovich, B.: Necessary optimality conditions for discrete optimal control problems. Moscow University computational mathematics and cybernetics, vol. 1, pp. 38–44 (2005)Google Scholar
  2. 2.
    Avakov, E.R., Arutyunov, A.V., Izmailov, A.F.: Necessary conditions for an extremum in a mathematical programming poblem. Proceedings of the Steklov Institute of Mathematics, vol. 256, pp. 2–25 (2007)Google Scholar
  3. 3.
    Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. I. Springer, Berlin (2005)zbMATHGoogle Scholar
  4. 4.
    Ben-Tal, A.: Second order and related extremality conditions in nonlinear programming. J. Optim. Theory Appl. 31, 143–165 (1980)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Bonnans, J.F., Cominetti, R., Shapiro, A.: Second order optimality conditions based on parabolic second order tangent sets. SIAM J. Optim. 9, 466–492 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Cominetti, R.: Metric regularity, tangent sets, and second-order optimality conditions. Appl. Math. Optim. 21, 265–287 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Gabasov, R., Mordukhovich, B.S., Kirillova, F.M.: The discrete maximum principle, Dokl. Akad. Nauk SSSR, 213, 19-22 (1973). (Russian; English transl. in Soviet Math. Dokl. 14, 1624-1627, 1973)Google Scholar
  8. 8.
    Henrion, R., Mordukhovich, B.S., Nam, N.M.: Second-order analysis of polyhedral systems in finite dimensions with applications to robust stability of variational inequalities. SIAM J. Optim. 20, 2199–2227 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Hilscher, R., Zeidan, V.: Second-order sufficiency criteria for a discrete optimal control problem. J. Abstr. Differ. Equ. Appl. 8(6), 573–602 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Hilscher, R., Zeidan, V.: Discrete optimal control: second-order optimality conditions. J. Abstr. Differ. Equ. Appl. 8(10), 875–896 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Ioffe, A.D.: Necessary and sufficient conditions for a local minimum. 3: Second order conditions and augmented duality. SIAM J. Control Optim. 17, 266–288 (1979)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Ioffe, A.D., Tihomirov, V.M.: Theory of Extremal Problems. North-Holland Publishing Company, North-Holland (1979)zbMATHGoogle Scholar
  13. 13.
    Kawasaki, H.: An envelope-like effect on infinitely many inequality constraints on second-order necessary conditions for minimization problems. Math. Program. 41, 73–96 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Kien, B.T., Nhu, V.H.: Second-order necessary optimality conditions for a class of semilinear elliptic optimal control problems with mixed pointwise constraints. SIAM J. Control Optim. 52, 1166–1202 (2014)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Larson, R.E., Casti, J.: Principles of Dynamic Programming, vol. I. Marcel Dekker, New York (1982)zbMATHGoogle Scholar
  16. 16.
    Larson, R.E., Casti, J.: Principles of Dynamic Programming, vol. II. Marcel Dekker, New York (1982)zbMATHGoogle Scholar
  17. 17.
    Lian, Z., Liu, L., Neuts, M.F.: A discrete-time model for common lifetime inventory systems. Math. Oper. Res. 30, 718–732 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Lyshevski, S.E.: Control System Theory with Engineering Applications, Control Engineering. Birkaäuser, Boston (2001)CrossRefGoogle Scholar
  19. 19.
    Mangasarian, O.L., Shiau, T.-H.: Lipschitz continuity of solutions of linear inequalities, programs and complementarity problems. SIAM J. Control Optim. 25, 583–595 (1987)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Malozemov, V.N., Omelchenko, A.V.: On a discrete optimal control problem with an explicit solution. J. Industral Manag. Optim. 2, 55–62 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Marinkovíc, B.: Optimality conditions in discrete optimal control problems. J. Optim. Methods Softw. 22, 959–969 (2007)CrossRefzbMATHGoogle Scholar
  22. 22.
    Marinkovíc, B.: Optimality conditions for discrete optimal control problems with equality and inequality type constraints. Positivity 12, 535–545 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Marinkovíc, B.: Second-order optimality conditions in a discrete optimal control problem. Optimization 57, 539–548 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Mordukhovich, B.S.: Difference approximations of optimal control system, Prikladaya Matematika I Mekhanika, 42, 431–440 (1978). (Russian; English transl. in J. Appl. Math. Mech., 42, 452-461, 1978)Google Scholar
  25. 25.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I, Basis Theory. Springer, Berlin (2006)Google Scholar
  26. 26.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation II, Applications. Springer, Berlin (2006)Google Scholar
  27. 27.
    Páles, Z., Zeidan, V.: Nonsmooth optimum problems with constraints. SIAM J. Control Optim. 32, 1476–1502 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    Penot, J.-P.: Optimality conditions in mathematical programming and composite optimization. Math. Program. 67, 225–245 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Pindyck, R.S.: An aplication of the linear quaratic tracking problem to economic stabilization policy. IEEE Trans. Automat Control 17, 287–300 (1972)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)CrossRefzbMATHGoogle Scholar
  31. 31.
    Toan, N.T., Ansari, Q.H., Yao, J.-C.: Second-order necessary optimality conditions for a discrete optimal control problem. J. Optim. Theory Appl. 165(3), 812–836 (2015)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Tu, P.N.V.: Introductory Optimization Dynamics. Springer, Berlin (1991)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Applied Mathematics and InformaticsHanoi University of Science and TechnologyHanoiVietnam

Personalised recommendations