Skip to main content
Log in

On the efficient Gerschgorin inclusion usage in the global optimization \(\alpha \hbox {BB}\) method

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we revisit the \(\alpha \)BB method for solving global optimization problems. We investigate optimality of the scaling vector used in Gerschgorin’s inclusion theorem to calculate bounds on the eigenvalues of the Hessian matrix. We propose two heuristics to compute a good scaling vector \(d\), and state three necessary optimality conditions for an optimal scaling vector. Since the scaling vectors calculated by the presented methods satisfy all three optimality conditions, they serve as cheap but efficient solutions. A small numerical study shows that they are practically always optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Floudas, C., Akrotirianakis, I., Caratzoulas, S., Meyer, C., Kallrath, J.: Global optimization in the 21st century: advances and challenges. Comput. Chem. Eng. 29(6), 1185–1202 (2005)

    Article  Google Scholar 

  2. Floudas, C.A.: Deterministic global optimization. Theory, methods and applications. In: Nonconvex Optimization and its Applications, vol. 37. Kluwer, Dordrecht (2000)

  3. Hansen, E.R., Walster, G.W.: Global Optimization using Interval Analysis, 2nd edn. Marcel Dekker, New York (2004)

    MATH  Google Scholar 

  4. Hendrix, E.M.T., Gazdag-Tóth, B.: Introduction to nonlinear and global optimization. In: Optimization and Its Applications, vol. 37. Springer, New York (2010)

  5. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  6. Kearfott, R.B.: Interval computations, rigour and non-rigour in deterministic continuous global optimization. Optim. Methods Softw. 26(2), 259–279 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kreinovich, V., Kubica, B.J.: From computing sets of optima, Pareto sets, and sets of Nash equilibria to general decision-related set computations. J. Univ. Comput. Sci. 16(18), 2657–2685 (2010)

    MATH  MathSciNet  Google Scholar 

  8. Neumaier, A.: Complete search in continuous global optimization and constraint satisfaction. Acta Numer. 13, 271–369 (2004)

    Article  MathSciNet  Google Scholar 

  9. Ninin, J., Messine, F.: A metaheuristic methodology based on the limitation of the memory of interval branch and bound algorithms. J. Glob. Optim. 50(4), 629–644 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, \(\alpha \)BB, for general twice-differentiabe constrained NLPs - II. Implementation and computational results. Comput. Chem. Eng. 22(9), 1159–1179 (1998)

    Article  Google Scholar 

  11. Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A global optimization method, \(\alpha \)BB, for general twice-differentiable constrained NLPs - I. Theoretical advances. Comput. Chem. Eng. 22(9), 1137–1158 (1998)

    Article  Google Scholar 

  12. Androulakis, I.P., Maranas, C.D., Floudas, C.A.: \(\alpha BB\): a global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7(4), 337–363 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Floudas, C.A., Gounaris, C.E.: A review of recent advances in global optimization. J. Glob. Optim. 45(1), 3–38 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Floudas, C.A., Pardalos, P.M. (eds.): Encyclopedia of Optimization, 2nd edn. Springer, New York (2009)

    MATH  Google Scholar 

  15. Skjäl, A., Westerlund, T.: New methods for calculating \(\alpha BB\)-type underestimators. J. Glob. Optim. pp. 1–17 (2014). doi:10.1007/s10898-013-0057-y

  16. Akrotirianakis, I.G., Meyer, C.A., Floudas, C.A.: The role of the off-diagonal elements of the hessian matrix in the construction of tight convex underestimators for nonconvex functions. In: Discovery Through Product and Process Design. Sixth International Conference on Foundations of Computer-Aided Process Design, FOCAPD 2004, Princeton, New Jersey, pp. 501–504 (2004)

  17. Skjäl, A., Westerlund, T., Misener, R., Floudas, C.A.: A generalization of the classical \(\alpha BB\) convex underestimation via diagonal and nondiagonal quadratic terms. J. Optim. Theory Appl. 154(2), 462–490 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Akrotirianakis, I.G., Floudas, C.A.: Computational experience with a new class of convex underestimators: Box-constrained NLP problems. J. Glob. Optim. 29(3), 249–264 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Akrotirianakis, I.G., Floudas, C.A.: A new class of improved convex underestimators for twice continuously differentiable constrained NLPs. J. Glob. Optim. 30(4), 367–390 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Floudas, C.A., Kreinovich, V.: On the functional form of convex underestimators for twice continuously differentiable functions. Optim. Lett. 1(2), 187–192 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zhu, Y., Kuno, T.: A global optimization method, QBB, for twice-differentiable nonconvex optimization problem. J. Glob. Optim. 33(3), 435–464 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Anstreicher, K.M.: On convex relaxations for quadratically constrained quadratic programming. Math. Program. 136(2), 233–251 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Domes, F., Neumaier, A.: Rigorous filtering using linear relaxations. J. Glob. Optim. 53(3), 441–473 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Scott, J.K., Stuber, M.D., Barton, P.I.: Generalized mccormick relaxations. J. Glob. Optim. 51(4), 569–606 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hladík, M.: Bounds on eigenvalues of real and complex interval matrices. Appl. Math. Comput. 219(10), 5584–5591 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hladík, M., Daney, D., Tsigaridas, E.: Bounds on real eigenvalues and singular values of interval matrices. SIAM J. Matrix Anal. Appl. 31(4), 2116–2129 (2010)

    Article  MATH  Google Scholar 

  27. Hladík, M., Daney, D., Tsigaridas, E.P.: A filtering method for the interval eigenvalue problem. Appl. Math. Comput. 217(12), 5236–5242 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Mönnigmann, M.: Fast calculation of spectral bounds for hessian matrices on hyperrectangles. SIAM J. Matrix Anal. Appl. 32(4), 1351–1366 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hladík, M.: The effect of Hessian evaluations in the global optimization \(\alpha \)BB method (2013). URL: http://arxiv.org/abs/1307.2791. Preprint

  30. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  31. Hogben, L. (ed.): Handbook of Linear Algebra. Chapman & Hall/CRC, London (2007)

  32. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  33. Gounaris, C.E., Floudas, C.A.: Tight convex underestimators for \({\cal {C}}^{2}\)-continuous problems. II: multivariate functions. J. Glob. Optim. 42(1), 69–89 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Rump, S.M.: INTLAB—INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing. Kluwer, Dordrecht pp. 77–104 (1999). URL: http://www.ti3.tu-harburg.de/rump/

Download references

Acknowledgments

The author was supported by the Czech Science Foundation Grant P402-13-10660S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Hladík.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hladík, M. On the efficient Gerschgorin inclusion usage in the global optimization \(\alpha \hbox {BB}\) method. J Glob Optim 61, 235–253 (2015). https://doi.org/10.1007/s10898-014-0161-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-014-0161-7

Keywords

Navigation