Journal of Global Optimization

, Volume 61, Issue 1, pp 91–108 | Cite as

Pareto-optimal front of cell formation problem in group technology

  • Julius ŽilinskasEmail author
  • Boris Goldengorin
  • Panos M. Pardalos


The earliest approaches to the cell formation problem in group technology, dealing with a binary machine-part incidence matrix, were aimed only at minimizing the number of intercell moves (exceptional elements in the block-diagonalized matrix). Later on this goal was extended to simultaneous minimization of the numbers of exceptions and voids, and minimization of intercell moves and within-cell load variation, respectively. In this paper we design the first exact branch-and-bound algorithm to create a Pareto-optimal front for the bi-criterion cell formation problem.


Cell formation problem Multi-objective optimization  Branch and bound 



This research was funded by a Grant (No. MIP-063/2012) from the Research Council of Lithuania. P. M. Pardalos is partially supported by LATNA Laboratory, NRU HSE, RF Government Grant, ag. 11.G34.31.0057. We thank D. Krushinsky for a fruitful discussion.


  1. 1.
    Arkat, J., Hosseini, L., Farahani, M.H.: Minimization of exceptional elements and voids in the cell formation problem using a multi-objective genetic algorithm. Expert Syst. Appl. 38(8), 9597–9602 (2011). doi: 10.1016/j.eswa.2011.01.161 CrossRefGoogle Scholar
  2. 2.
    Bajestani, M.A., Rabbani, M., Rahimi-Vahed, A., Khoshkhou, G.B.: A multi-objective scatter search for a dynamic cell formation problem. Comput. Oper. Res. 36(3), 777–794 (2009). doi: 10.1016/j.cor.2007.10.026 CrossRefzbMATHGoogle Scholar
  3. 3.
    Batsyn, M., Bychkov, I., Goldengorin, B., Pardalos, P.M., Sukhov, P.: Pattern-based heuristic for the cell formation problem in group technology. In: B. Goldengorin, V.A. Kalyagin, P.M. Pardalos (eds.) Models, Algorithms, and Technologies for Network Analysis, Springer Proceedings in Mathematics & Statistics, vol. 32, pp. 11–50. Springer, New York (2013). doi: 10.1007/978-1-4614-5574-52
  4. 4.
    Boulif, M., Atif, K.: A new fuzzy genetic algorithm for the dynamic bi-objective cell formation problem considering passive and active strategies. Int. J. Approx. Reason. 47(2), 141–165 (2008). doi: 10.1016/j.ijar.2007.03.003 CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Chinchuluun, A., Pardalos, P.M.: A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 154, 29–50 (2007). doi: 10.1007/s10479-007-0186-0 CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Dimopoulos, C.: A review of evolutionary multiobjective optimization applications in the area of production research. In: Congress on Evolutionary Computation (CEC2004), vol. 2, pp. 1487–1494 (2004). doi: 10.1109/CEC.2004.1331072
  7. 7.
    Dimopoulos, C.: Explicit consideration of multiple objectives in cellular manufacturing. Eng. Optim. 39(5), 551–565 (2007). doi: 10.1080/03052150701351631 CrossRefGoogle Scholar
  8. 8.
    Fontes, D.B.M.M., Gaspar-Cunha, A.: On multi-objective evolutionary algorithms. In: C. Zopounidis, P.M. Pardalos (eds.) Handbook of Multicriteria Analysis, Applied Optimization, vol. 103, pp. 287–310. Springer, Berlin (2010). doi: 10.1007/978-3-540-92828-7_10
  9. 9.
    Goldengorin, B., Krushinsky, D., Pardalos, P.M.: Cell Formation in Industrial Engineering: Theory, Algorithms and Experiments. Springer, New York (2013)CrossRefGoogle Scholar
  10. 10.
    Goldengorin, B., Krushinsky, D., Slomp, J.: Flexible PMP approach for large-size cell formation. Oper. Res. 60(5), 1157–1166 (2012). doi: 10.1287/opre1120.1108 CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Goldengorin, B., Pardalos, P.M.: Data Correcting Approaches in Combinatorial Optimization. Springer, New York (2012)CrossRefzbMATHGoogle Scholar
  12. 12.
    Lee, S.D., Chen, Y.L.: A weighted approach for cellular manufacturing design: minimizing intercell movement and balancing workload among duplicated machines. Int. J. Prod. Res. 35(4), 1125–1146 (1997). doi: 10.1080/002075497195588 CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Lei, D., Wu, Z.: Tabu search for multiple-criteria manufacturing cell design. Int. J. Adv. Manuf. Technol. 28, 950–956 (2006). doi: 10.1007/s00170-004-2441-8 CrossRefGoogle Scholar
  14. 14.
    Malakooti, B., Yang, Z.: Multiple criteria approach and generation of efficient alternatives for machine-part family formationin group technology. IIE Trans. 34, 837–846 (2002). doi: 10.1023/A:1015557007084 Google Scholar
  15. 15.
    Mansouri, S.A., Husseini, S.M., Newman, S.: A review of the modern approaches to multi-criteria cell design. Int. J. Prod. Res. 38(5), 1201–1218 (2000). doi: 10.1080/002075400189095 CrossRefzbMATHGoogle Scholar
  16. 16.
    Neto, A.R.P., Filho, E.V.G.: A simulation-based evolutionary multiobjective approach to manufacturing cell formation. Comput. Ind. Eng. 59(1), 64–74 (2010). doi: 10.1016/j.cie.2010.02.017 CrossRefGoogle Scholar
  17. 17.
    Papaioannou, G., Wilson, J.M.: The evolution of cell formation problem methodologies based on recent studies (1997–2008): review and directions for future research. Eur. J. Oper. Res. 206(3), 509–521 (2010). doi: 10.1016/j.ejor.2009.10.020 CrossRefzbMATHGoogle Scholar
  18. 18.
    Paulavičius, R., Žilinskas, J., Grothey, A.: Investigation of selection strategies in branch and bound algorithm with simplicial partitions and combination of Lipschitz bounds. Optim. Lett. 4, 173–183 (2010). doi: 10.1007/s11590-009-0156-3 CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Saaty, T.L.: The modern science of multicriteria decision making and its practical applications: the AHP/ANP approach. Oper. Res. 61(5), 1101–1118 (2013). doi: 10.1287/opre2013.1197 CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Su, C.T., Hsu, C.M.: Multi-objective machine-part cell formation through parallel simulated annealing. Int. J. Prod. Res. 36(8), 2185–2207 (1998). doi: 10.1080/002075498192841 CrossRefzbMATHGoogle Scholar
  21. 21.
    Tavakkoli-Moghaddam, R., Ranjbar-Bourani, M., Amin, G., Siadat, A.: A cell formation problem considering machine utilization and alternative process routes by scatter search. J. Intell. Manuf. 23, 1127–1139 (2012). doi: 10.1007/s10845-010-0395-2 CrossRefGoogle Scholar
  22. 22.
    Venugopal, V., Narendran, T.: A genetic algorithm approach to the machine-component grouping problem with multiple objectives. Comput. Ind. Eng. 22(4), 469–480 (1992). doi: 10.1016/0360-8352(92)90022-C CrossRefGoogle Scholar
  23. 23.
    Wemmerlov, U., Johnson, D.J.: Empirical findings on manufacturing cell design. Int. J. Prod. Res. 38(3), 481–507 (2000). doi: 10.1080/002075400189275 CrossRefGoogle Scholar
  24. 24.
    Zopounidis, C., Pardalos, P.M. (eds.): Handbook of Multicriteria Analysis, Applied Optimization, vol. 103. Springer, Berlin (2010). doi: 10.1007/978-3-540-92828-7
  25. 25.
    Žilinskas, A., Žilinskas, J.: Branch and bound algorithm for multidimensional scaling with city-block metric. J. Glob. Optim. 43, 357–372 (2009). doi: 10.1007/s10898-008-9306-x CrossRefzbMATHGoogle Scholar
  26. 26.
    Žilinskas, J.: Reducing of search space of multidimensional scaling problems with data exposing symmetries. Inf. Technol. Control 36(4), 377–382 (2007)Google Scholar
  27. 27.
    Žilinskas, J.: Branch and bound with simplicial partitions for global optimization. Math. Model. Anal. 13(1), 145–159 (2008). doi: 10.3846/1392-6292.2008.13.145-159 CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Julius Žilinskas
    • 1
    Email author
  • Boris Goldengorin
    • 2
  • Panos M. Pardalos
    • 2
    • 3
  1. 1.Vilnius University Institute of Mathematics and InformaticsVilniusLithuania
  2. 2.Department of Industrial and Systems Engineering, Center for Applied OptimizationUniversity of FloridaGainesvilleUSA
  3. 3.Laboratory of Algorithms and Technologies for Networks AnalysisHigher School of EconomicsNizhny NovgorodRussia

Personalised recommendations