Skip to main content

A VNS metaheuristic for solving the aircraft conflict detection and resolution problem by performing turn changes

Abstract

The aircraft Conflict Detection and Resolution (CDR) problem in air traffic management consists of finding a new configuration for a set of aircraft such that conflict situations between them are avoided. A conflict situation arises if two or more aircraft violate the safety distances that they must maintain in flight. In this paper we propose a Variable Neighborhood Search approach for solving the CDR by turn changes. This metaheuristic compares favorably with previous best known methods for solving the Mixed Integer Nonlinear Programming (MINLP) model proposed elsewhere. It is worth pointing out the astonishingly short time in which the first feasible solution is obtained. This is crucial for this specific problem, where a response must be provided almost in real time if it is to be useful in a real-life problem. A comparative study between the performance of the new approach, a state-of-the-art MINLP solver and our Sequential Integer Linear Optimization approach proposed elsewhere is reported, using a testbed of instances with up to 25 aircraft.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Alonso-Ayuso, A., Escudero, L.F., Martín-Campo, F.J.: Collision avoidance in the air traffic management: a mixed integer linear optimization approach. IEEE Trans. Intell. Transp. Syst. 12(1), 47–57 (2011)

    Article  Google Scholar 

  2. Alonso-Ayuso, A., Escudero, L.F., Martín-Campo, F.J.: A mixed 0–1 nonlinear optimization model and algorithmic approach for the collision avoidance in ATM: velocity changes through a time horizon. Comput. Oper. Res. 12(39), 3136–3146 (2012)

    Article  Google Scholar 

  3. Alonso-Ayuso, A., Escudero, L.F., Martín-Campo, F.J.: On solving the aircraft collision avoidance problem by turn changes. Exact nonconvex mixed integer nonlinear optimization and approximate. (Submitted) (2012)

  4. Alonso-Ayuso, A., Escudero, L.F., Martín-Campo, F.J.: On modeling the air traffic control coordination in the collision avoidance problem by mixed integer linear optimization. Ann. Op. Res.(2013). doi:10.1007/s10479-013-1347-y

  5. Alonso-Ayuso, A., Escudero, L.F., Olaso, P., Pizarro, C.: Conflict avoidance: 0–1 linear models for conflict detection and resolution. TOP 21(3), 485–504 (2013)

    MATH  MathSciNet  Article  Google Scholar 

  6. Audet, C., Béchard, V., Le Digabel, S.: Nonsmooth optimization through mesh adaptive direct search and variable neighborhood search. J. Glob. Optim. 41(2), 299–318 (2008)

    MATH  Article  Google Scholar 

  7. Bierlaire, M., Thémans, M., Zufferey, N.: A heuristic for nonlinear global optimization. INFORMS J. Comput. 22(1), 59–70 (2010)

    MATH  MathSciNet  Article  Google Scholar 

  8. Bonini, D., Dupré, C., Granger, G.: How erasmus can support an increase in capacity in 2020. In: Proceedings of the 7th International Conference on Computing, Communications and Control Technologies, Orlando (2009)

  9. Brimberg, J., Hansen, P., Mladenović, N.: Attraction probabilities in variable neighborhood search. 4OR 8, 181–194 (2010)

    Google Scholar 

  10. Cafieri, S., Durand, N.: Aircraft deconfliction with speed regulation: new models from mixed-integer optimization. J. Glob. Optim. (2013). doi:10.1007/s10898-013-0070-1

  11. Carrizosa, E., Dražić, M., Dražić, Z., Mladenović, N.: Gaussian variable neighborhood search for continuous optimization. Comput. Oper. Res. 39(9), 1919–2266 (2012)

    MathSciNet  Article  Google Scholar 

  12. Cetek, C.: Realistic speed change maneuvers for air traffic conflict avoidance and their impact on aircraft economics. Int. J. Civ. Aviat. 1(1), 62–73 (2009)

    Google Scholar 

  13. Christodoulou, M., Kontogeorgou, C.: Automatic collision avoidance in commercial aircraft three dimensional flights, using neural networks and non-linear programming. In: C. Skiadas (ed.) Chaotic Modeling and Simulation (2008)

  14. Christodoulou, M.A., Costoulakis, C.: Nonlinear mixed integer programming for aircraft collision avoidance in free flight. IEEE Melecon 2004, Dubrovnik, Croacia 1, 327–330 (2004)

  15. Dell’Olmo, P., Lulli, G.: A new hierarchical architecture for air traffic management: optimization of airway capacity in a free flight scenario. Eur. J. Oper. Res. 144, 179–193 (2003)

    MATH  Article  Google Scholar 

  16. Durand, N.: Optimisation de trajectoires pour la rèsolution de conflits en route. Ph.D. thesis, Institut National Polytechnique de Toulouse (1996)

  17. Durand, N., Alliot, J.: Ant colony optimization for air traffic conflict resolution. In 8th USA/Europe air traffic management research and development seminar (ATM2009) (2009)

  18. Durand, N., Alliot, J., Médioni, F.: Neural nets trained by genetic algorithms for collision avoidance. Appl. Intell. 13, 205–213 (2000)

    Article  Google Scholar 

  19. Frazzoli, E., Mao, Z.H., Oh, J.H., Feron, E.: Resolution of conflicts involving many aircraft via semidefinite programming. AIAA J. Guid. Control. Dyn. 24(1), 79–86 (2001)

    Article  Google Scholar 

  20. Gao, Y., Zhang, X., Guan, X.: Cooperative multi-aircraft conflict resolution based on co-evolution. In: 2012 International symposium on intrumentation and measurement, sensor network and automation (IMSNA), pp. 310–313 (2012)

  21. Hansen, P., Mladenović, N., Pérez, J.M.: Variable neighbourhood search: methods and applications. 4-OR 6, 319–360 (2008)

  22. Jardin, M.R.: Real-time confl. -free traject. optim. Fifth USA/Europe Air Trafic Management RD seminar, Budapest (Hungary) (2003)

  23. Kuchar, J.K., Yang, L.C.: A review of conflict detection and resolution modeling methods. IEEE Trans. Intell. Transp. Syst. 1(4), 179–189 (2000)

    Article  Google Scholar 

  24. Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A., Munson, T.: Minotaur Solver. http://wiki.mcs.anl.gov/minotaur/index.php/MINOTAUR last accessed in November 2013 (2011)

  25. Martín-Campo, F.J.: The collision avoidance problem: methods and algorithms. Lambert Academic Publishing (2012)

  26. Médioni, F., Durand, N., Alliot, J.: Air traffic conflict resolution by genetic algorithms. Lect. Notes Comput. Sci. 1063, 370–383 (1996)

    Article  Google Scholar 

  27. Meng, G., Qi, F.: Flight conflict resolution for civil aviation based on ant colony optimization. pp. 239–241 (2012)

  28. Mladenović, N., Dražić, M., Kovačević-Vujčić, V., Čangalović, M.: General variable neighborhood search for the continuous optimization. Eur. J. Oper. Res. 191(3), 753–770 (2008)

    MATH  Article  Google Scholar 

  29. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997)

    MATH  MathSciNet  Article  Google Scholar 

  30. Mladenović, N., Petrović, J., Kovačević-Vujčić, V., Čangalović, M.: Solving spread spectrum radar polyphase code design problem by tabu search and variable neighborhood search. Eur. J. Oper. Res. 151, 389–399 (2003)

    MATH  Article  Google Scholar 

  31. Mladenović, N., Todosijevic, R., Urošević, D.: An efficient general variable neighborhood search for large TSP problem with time windows. Yugosl. J. Oper. Res. 22, 141–151 (2012)

    Google Scholar 

  32. Pallottino, L., Feron, E., Bicchi, A.: Conflict resolution problems for air traffic management systems solved with mixed integer programming. IEEE Trans. Intell. Transp. Syst. 3(1), 3–11 (2002)

    Article  Google Scholar 

  33. Peyronne, C., Conn, A., Mongeau, M., Delahaye, D.: Solving air-traffic conflict problems via local continuous optimization. (Submitted) (2012)

  34. Rey, D., Rapine, C., Fondacci, R., Faouzi, N.E.: Minimization of potentials air conflicts through speed regulation. Trans. Res. Rec.: J. Trans. Res. Board 2300, 59–67 (2012)

    Article  Google Scholar 

  35. Toksari, M., Güner, E.: Solving the unconstrained optimization problem by a variable neighborhood search. J. Math. Anal. Appl. 328(2), 1178–1187 (2007)

    MATH  MathSciNet  Article  Google Scholar 

  36. Treleaven, K.: Conflict resolution and traffic complexity of multiple intersecting flows of aircraft. Ph.D. thesis, Faculty of the School of Engineering, University of Pittsburgh, Pittsburgh, (PA), USA (2007)

  37. Vivona, R., Karr, D., Roscoe, D.: Pattern based genetic algorithm for airborne conflict resolution. In: AIAA Guidance Navigation, Control Conference Exhibition, Paper AIAA 2006–6060 (2006)

Download references

Acknowledgments

The authors are grateful for the help of Sven Leyffer of the Mathematics and Computer Science Division, National Laboratory, Chicago, USA, for making available to us his nonconvex MINLP Minotaur engine. This research has been partially supported by the projects MTM2012-36163-C06-06 by the Ministerio de Economía y Competitividad, Spain, RIESGOS CM by the Regional Community of Madrid, Spain, and 174010 by the Serbian Ministry of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Javier Martín-Campo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alonso-Ayuso, A., Escudero, L.F., Martín-Campo, F.J. et al. A VNS metaheuristic for solving the aircraft conflict detection and resolution problem by performing turn changes. J Glob Optim 63, 583–596 (2015). https://doi.org/10.1007/s10898-014-0144-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-014-0144-8

Keywords

  • Aircraft collision detection and resolution problem
  • Air traffic management
  • Variable neighborhood search