Journal of Global Optimization

, Volume 61, Issue 1, pp 109–138 | Cite as

Analytical characterizations of some classes of optimal strongly attack-tolerant networks and their Laplacian spectra

  • Alexander Veremyev
  • Vladimir Boginski
  • Eduardo L. Pasiliao
Article

Abstract

This paper analytically characterizes certain classes of low-diameter strongly attack-tolerant networks of arbitrary size, which are globally optimal in the sense that they contain the minimum possible number of edges. Strong attack tolerance property of level\(R\) implies that a network preserves connectivity and diameter after the deletion of up to \(R-1\) network elements (vertices and/or edges). In addition to identifying such optimal network configurations, we explicitly derive their entire Laplacian spectra, that is, all eigenvalues and eigenvectors of the graph Laplacian matrix. Each of these eigenvalues is by itself a solution to a global optimization problem; thus, the results of this study show that these optimization problems yield analytical solutions for the considered classes of networks. As an important special case, we show that the algebraic connectivity (i.e., the second-smallest eigenvalue of the Laplacian) considered as a function on all networks with fixed vertex connectivity \(R\) reaches its maximum on the optimal \(R\)-robust 2-club, which has diameter 2 and strong attack tolerance of level \(R\). We also demonstrate that the obtained results have direct implications on the exact calculation of convergence speed of consensus algorithms utilizing the entire Laplacian spectrum, which is in contrast to traditionally used simulation-based estimates through just the algebraic connectivity.

Keywords

Optimal attack-tolerant network topologies Laplacian spectra  Algebraic connectivity 

References

  1. 1.
    Aragues, R., Shi, G., Dimarogonas, D.V., Sagues, C., Johansson, K.H.: Distributed algebraic connectivity estimation for adaptive event-triggered consensus. In: American Control Conference (2012).Google Scholar
  2. 2.
    Balasundaram, B., Butenko, S., Trukhanov, S.: Novel approaches for analyzing biological networks. J. Comb. Optim. 10, 23–39 (2005)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Boillat, J.E.: Load balancing and poisson equation in a graph. Concurrency. Pract. Exp. 2(4), 289–313 (1990)CrossRefGoogle Scholar
  4. 4.
    Botton, Q., Fortz, B., Gouveia, L., Poss, M.: Benders decomposition for the hop-constrained survivable network design problem. INFORMS J. Comput. (2011). 0.1287/ijoc.1110.0472.Google Scholar
  5. 5.
    Bourjolly, J.M., Laporte, G., Pesant, G.: An exact algorithm for the maximum k-club problem in an undirected graph. Eur. J. Oper. Res. 138, 21–28 (2002)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Boyd S, Ghosh A, Prabhakar B, Shah D (2006), Randomized gossip algorithms. IEEE/ACM Trans. Netw. 14(I):2508–2530.Google Scholar
  7. 7.
    Caccetta, L.: On extremal graphs with given diameter and connectivity. Ann. N. Y. Acad. Sci. 328(1), 76–94 (1979)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Chung, F.R.K.: Spectral Graph Theory (CBMS Regional Conference Series in Mathematics, No. 92). Am. Mathem. Soc. (1996).Google Scholar
  9. 9.
    Cybenko, G.: Dynamic load balancing for distributed memory multiprocessors. J Paral. Distrib. Comput. 7(2), 279–301 (1989)CrossRefGoogle Scholar
  10. 10.
    Das, A., Mesbahi, M.: K-node connected power efficient topologies in networks with sectored antennas. In: Military communications conference, 2005. MILCOM 2005. IEEE (2005).Google Scholar
  11. 11.
    Deabreu, N.: Old and new results on algebraic connectivity of graphs. Linear Algebra Appl 423(1), 53–73 (2007)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Faudree, R.J., Gould, R.J., Powell, J.S.: Property pd, m and efficient design of reliable networks. Networks 60(3), 167–178 (2012)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Fax, J., Murray, R.: Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Cont. 49(9), 1465–1476 (2004)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Math. J. 23(98), 298–305 (1973)MathSciNetGoogle Scholar
  15. 15.
    Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czechoslovak Math. J. 25 (1975).Google Scholar
  16. 16.
    Ghosh, A., Boyd, S.: Growing well-connected graphs. Proceedings of the 45th IEEE conference on decision and control 78, 6605–6611 (2006)CrossRefGoogle Scholar
  17. 17.
    Gouveia, L., Patricio, P., Sousa, A.: Hop-constrained node survivable network design: An application to mpls over wdm. Netw. Spat. Econ. 8(1), 3–21 (2008)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Grone, R., Merris, R.: The laplacian spectrum of a graph ii. SIAM J. Disc. Math. 7(2), 221–229 (1994)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Grone, R., Merris, R., Sunder, V.: The laplacian spectrum of a graph. SIAM J. Matrix Anal. Appl. 11(2), 218–238 (1990)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Harary, F.: The maximum connectivity of a graph. Proc. Natl. Acad. Sci. USA. 48(7), 1142–1146 (1962)CrossRefMATHGoogle Scholar
  21. 21.
    Jadbabaie, A., Lin, J., Morse, A.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Contl. 48(6), 988–1001 (2003)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Jamakovic, A., Uhlig, S.: On the relationship between the algebraic connectivity and graph’s robustness to node and link failures. In: Next generation internet networks, 3rd EuroNGI conference on, Trondheim, Norway (2007).Google Scholar
  23. 23.
    Jamakovic, A., Van Mieghem, P.: On the robustness of complex networks by using the algebraic connectivity. Proceedings of the 7th international IFIP-TC6 networking conference on AdHoc and sensor networks. wireless networks, next generation internet, NETWORKING’08, pp. 183–194. Springer, Berlin (2008)Google Scholar
  24. 24.
    Kar, S., Moura, J.M.F.: Sensor networks with random links: Topology design for distributed consensus. IEEE Trans. Signal Process pp 3315–3326 (2008).Google Scholar
  25. 25.
    Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information. Proceedings of the 44th Annual IEEE symposium on foundations of computer science. FOCS ’03, pp. 482–491. IEEE Computer Society, Washington (2003)Google Scholar
  26. 26.
    Kim, Y.: Bisection algorithm of increasing algebraic connectivity by adding an edge. IEEE Trans. Autom. Contl. 55, 170–174 (2010)CrossRefGoogle Scholar
  27. 27.
    Kitano, H., Ghosh, S., Matsuoka, Y.: Social engineering for virtual “big science” in systems biology. Nat. Chem. Biol. 7, 323–326 (2011)CrossRefGoogle Scholar
  28. 28.
    Kuramoto, Y.: Chemical oscillations, waves, and turbulence. dover books on chemistry series. Dover Publications (2003). http://books.google.com/books?id=4ADt7smO5Q8C
  29. 29.
    Lee, S.L., Yeh, Y.N.: On eigenvalues and eigenvectors of graphs. J. Math. Chem. 12, 121–135 (1993)CrossRefMathSciNetGoogle Scholar
  30. 30.
    de Lima, L.S., de Abreu, N.M.M., Oliveira, C.S., de Freitas, M.A.A.: Laplacian integral graphs in s(a, b). Linear Algebra. Appl. 423(1), 136–145 (2007)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Merris, R.: Laplacian matrices of graphs: a survey. Linear Algebra Appl. 197–198, 143–176 (1994)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Merris, R.: A survey of graph laplacians. Linear and Multilinear Algebra 39(1–2), 19–31 (1995)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Mirollo, R.E., Strogatz, S.H.: Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math 50, 1645–1662 (1990)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Mohar, B.: The laplacian spectrum of graphs. In: Graph Theory, combinatorics, and applications, pp 871–898. Wiley (1991).Google Scholar
  35. 35.
    Mohar, B.: Some applications of laplace eigenvalues of graphs. In: Graph symmetry: algebraic methods and applications, volume 497 of NATO ASI Series C, pp 227–275. Kluwer (1997).Google Scholar
  36. 36.
    Mohar, B., Poljak, S.: Eigenvalues in combinatorial optimization. Springer, Berlin (1993)Google Scholar
  37. 37.
    Mokken, R.J.: Cliques, clubs and clans. Qual. Quan. 13(2), 161–173 (1979)CrossRefGoogle Scholar
  38. 38.
    Moreau, L.: Stability of multiagent systems with time-dependent communication links. IEEE Trans. Autom. Contl. 50(2), 169–182 (2005)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Nagurney, A.: Financial networks. Handbook of Financial Engineering pp 343–382 (2008).Google Scholar
  40. 40.
    Nagurney, A., Qiang, Q.: Fragile networks: identifying vulnerabilities and synergies in an uncertain world. Wiley, London (2009)CrossRefGoogle Scholar
  41. 41.
    Nagurney, A., Siokos, S.: Financial networks: statics and dynamics. Springer, Berlin (1997)CrossRefGoogle Scholar
  42. 42.
    Nikoloski, Z., May, P., Selbig, J.: Algebraic connectivity may explain the evolution of gene regulatory networks. J. Theoret. Biol. 267(1), 7–14 (2010)CrossRefMathSciNetGoogle Scholar
  43. 43.
    Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)CrossRefGoogle Scholar
  44. 44.
    Olfati-Saber, R., Murray, R.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Contl. 49(9), 1520–1533 (2004)CrossRefMathSciNetGoogle Scholar
  45. 45.
    Pattillo, J., Youssef, N., Butenko, S.: On clique relaxation models in network analysis. Eur. J. Operat. Res. 226, 9–18 (2013)CrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    Strogatz, S.H.: From kuramoto to crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys. D 143(1–4), 1–20 (2000)CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    Veremyev, A., Boginski, V.: Identifying large robust network clusters via new compact formulations of maximum \(k\)-club problems. Eur. J. Operat. Res. 218, 316–326 (2012)CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    Veremyev, A., Boginski, V.: Robustness and strong attack tolerance of low-diameter networks. In: A. Sorokin, R. Murphey, M.T. Thai, P.M. Pardalos (eds.) Dynamics of Information Systems: Mathematical Foundations, Springer Proceedings in Mathematics & Statistics, vol. 20, pp. 137–156. Springer New York (2012).Google Scholar
  49. 49.
    Wang, H., Kooij, R.E., Mieghem, P.V.: Graphs with given diameter maximizing the algebraic connectivity. Linear Algebra and Its Applications (2010).Google Scholar
  50. 50.
    Xiao, L., Boyd, S., Lall, S.: A space-time diffusion scheme for peer-to-peer least-squares estimation. In: Proceedings of the 5th international conference on Information processing in sensor networks, pp. 168–176. ACM (2006).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Alexander Veremyev
    • 1
  • Vladimir Boginski
    • 2
  • Eduardo L. Pasiliao
    • 1
  1. 1.Munitions DirectorateAir Force Research LaboratoryEglin AFBUSA
  2. 2.Defense-Oriented Operations Research Laboratory, Department of Industrial and Systems EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations