Journal of Global Optimization

, Volume 60, Issue 4, pp 713–736 | Cite as

Primal and dual approximation algorithms for convex vector optimization problems

  • Andreas Löhne
  • Birgit RudloffEmail author
  • Firdevs Ulus


Two approximation algorithms for solving convex vector optimization problems (CVOPs) are provided. Both algorithms solve the CVOP and its geometric dual problem simultaneously. The first algorithm is an extension of Benson’s outer approximation algorithm, and the second one is a dual variant of it. Both algorithms provide an inner as well as an outer approximation of the (upper and lower) images. Only one scalar convex program has to be solved in each iteration. We allow objective and constraint functions that are not necessarily differentiable, allow solid pointed polyhedral ordering cones, and relate the approximations to an appropriate \(\epsilon \)-solution concept. Numerical examples are provided.


Vector optimization Multiple objective optimization Convex programming Duality Algorithms Outer approximation 


  1. 1.
    Ararat, Ç, Hamel, A.H., Rudloff, B.: Set-valued shortfall and divergence risk measures. submitted (2013)Google Scholar
  2. 2.
    Benson, H.P.: An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem. J. Glob. Optim. 13, 1–24 (1998)CrossRefGoogle Scholar
  3. 3.
    Bremner, D., Fukuda, K., Marzetta, A.: Primal-dual methods for vertex and facet enumeration. Discrete Comput. Geom. 20(3), 333–357 (1998)CrossRefGoogle Scholar
  4. 4.
    Csirmaz L.: Using multiobjective optimization to map the entropy region of four random variables. Preprint (2013)
  5. 5.
    CVX Research. Inc.: CVX: Matlab software for disciplined convex programming, version 2.0 beta., September 2012Google Scholar
  6. 6.
    Ehrgott, M., Löhne, A., Shao, L.: A dual variant of Benson’s outer approximation algorithm. J. Glob. Optim. 52(4), 757–778 (2012)CrossRefGoogle Scholar
  7. 7.
    Ehrgott, M., Shao, L., Schöbel, A.: An approximation algorithm for convex multi-objective programming problems. J. Glob. Optim. 50(3), 397–416 (2011)CrossRefGoogle Scholar
  8. 8.
    Ehrgott, M., Wiecek, M. M.: Multiobjective Programming. In: Figueira, J., Greco, S., Ehrgott, M., (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys. Springer Science + Business Media, Berlin, pp. 667–722 (2005)Google Scholar
  9. 9.
    Grant, M., Boyd, S.: Recent advances in learning and control, chapter Graph implementations for nonsmooth convex programs. Lecture Notes in Control and Information Sciences. Springer, Berlin, pp. 95–110 (2008)Google Scholar
  10. 10.
    Hamel, A.H., Löhne, A.: Lagrange duality in set optimization. J. Optim. Theory Appl. (2013). doi: 10.1007/s10957-013-0431-4 Google Scholar
  11. 11.
    Hamel, A.H., Löhne, A., Rudloff, B.: A Benson type algorithm for linear vector optimization and applications. J. Glob. Optim. (2013). doi: 10.1007/s10898-013-0098-2 Google Scholar
  12. 12.
    Hamel, A.H., Rudloff, B., Yankova, M.: Set-valued average value at risk and its computation. Math. Financ. Econ. 7(2), 229–246 (2013)CrossRefGoogle Scholar
  13. 13.
    Heyde, F.: Geometric duality for convex vector optimization problems. J. Convex Anal. 20(3), 813–832 (2013)Google Scholar
  14. 14.
    Heyde, F., Löhne, A.: Geometric duality in multiple objective linear programming. SIAM J. Optim. 19(2), 836–845 (2008)CrossRefGoogle Scholar
  15. 15.
    Heyde, F., Löhne, A.: Solution concepts in vector optimization: a fresh look at an old story. Optimization 60(12), 1421–1440 (2011)CrossRefGoogle Scholar
  16. 16.
    Jahn, J.: Vector Optimization: Theory, Applications, and Extensions. Springer, Berlin (2004)CrossRefGoogle Scholar
  17. 17.
    Kabanov, Y.M.: Hedging and liquidation under transaction costs in currency markets. Financ. Stoch. 3, 237–248 (1999)CrossRefGoogle Scholar
  18. 18.
    Löhne, A.: Vector Optimization with Infimum and Supremum. Springer, Berlin (2011)CrossRefGoogle Scholar
  19. 19.
    Löhne, A., Rudloff, B.: An algorithm for calculating the set of superhedging portfolios in markets with transaction costs. Int. J. Theor. Appl. Finance. (to appear)Google Scholar
  20. 20.
    Luc, D.: Theory of vector optimization. In: Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer, Berlin (1989)Google Scholar
  21. 21.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)Google Scholar
  22. 22.
    Ruzika, S., Wiecek, M.M.: Approximation methods in multiobjective programming. J. Optim. Theory Appl. 126(3), 473–501 (2005)CrossRefGoogle Scholar
  23. 23.
    Shao, L., Ehrgott, M.: Approximately solving multiobjective linear programmes in objective space and an application in radiotherapy treatment planning. Math. Methods Oper. Res. 68(2), 257–276 (2008)CrossRefGoogle Scholar
  24. 24.
    Shao, L., Ehrgott, M.: Approximating the nondominated set of an MOLP by approximately solving its dual problem. Math. Methods Oper. Res. 68(3), 469–492 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of MathematicsMartin-Luther-Universität Halle-WittenbergHalle (Saale)Germany
  2. 2.Department of Operations Research and Financial EngineeringPrinceton UniversityPrincetonUSA
  3. 3.Bendheim Center for FinancePrinceton UniversityPrincetonUSA

Personalised recommendations