Journal of Global Optimization

, Volume 55, Issue 3, pp 491–506 | Cite as

Branch-and-bound algorithms for the partial inverse mixed integer linear programming problem

Article
  • 275 Downloads

Abstract

This paper presents branch-and-bound algorithms for the partial inverse mixed integer linear programming (PInvMILP) problem, which is to find a minimal perturbation to the objective function of a mixed integer linear program (MILP), measured by some norm, such that there exists an optimal solution to the perturbed MILP that also satisfies an additional set of linear constraints. This is a new extension to the existing inverse optimization models. Under the weighted \(L_1\) and \(L_\infty \) norms, the presented algorithms are proved to finitely converge to global optimality. In the presented algorithms, linear programs with complementarity constraints (LPCCs) need to be solved repeatedly as a subroutine, which is analogous to repeatedly solving linear programs for MILPs. Therefore, the computational complexity of the PInvMILP algorithms can be expected to be much worse than that of MILP or LPCC. Computational experiments show that small-sized test instances can be solved within a reasonable time period.

Keywords

Inverse optimization Partial inverse mixed integer linear programming Branch-and-bound Linear program with complementarity constraints 

Notes

Acknowledgments

I thank the Associate Editor and the anonymous referees for helpful feedback. This research was partially supported by the National Science Foundation under Grant EFRI-0835989.

References

  1. 1.
    Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Oper. Res. Lett. 34, 361–372 (2006)CrossRefGoogle Scholar
  2. 2.
    Ahmed, S., Guan, Y.: The inverse optimal value problem. Math. Program. 102(1), 91–110 (2005)CrossRefGoogle Scholar
  3. 3.
    Ahuja, R.K., Orlin, J.B.: Inverse optimization. Oper. Res. 49(5), 771–783 (2001)CrossRefGoogle Scholar
  4. 4.
    Audet, C., Savard, G., Zghal, W.: New branch-and-cut algorithm for bilevel linear programming. J. Optim. Theory Appl. 134, 353–370 (2007)CrossRefGoogle Scholar
  5. 5.
    Awerbuch, S.: Portfolio-based electricity generation planning: policy implications for renewables and energy security. Mitig. Adapt. Strateg. Global Chang. 11, 693–710 (2006)CrossRefGoogle Scholar
  6. 6.
    Beil, D.R., Wein, L.M.: An inverse-optimization-based auction mechanism to support a multiattribute RFQ process. Manag. Sci. 49, 1529–1545 (2003)CrossRefGoogle Scholar
  7. 7.
    Ben-Ayed, O., Blair, C.E.: Computational difficulties of bilevel linear programming. Oper. Res. 38(3), 556–560 (1990)CrossRefGoogle Scholar
  8. 8.
    Burton, D., Toint, PhL: On an instance of the inverse shortest paths problem. Math. Program. 53, 45–61 (1992)CrossRefGoogle Scholar
  9. 9.
    Dempe, S., Lohse, S.: Inverse Linear Programming. Springer, Berlin (2005)Google Scholar
  10. 10.
    Deolalikar, V.: P \(\ne \) NP. Technical Report, HP Research Labs (2010)Google Scholar
  11. 11.
    Dial, R.B.: Minimal-revenue congestion pricing part I: a fast algorithm for the single-origin case. Transp. Res. Part B 33, 189–202 (1999)CrossRefGoogle Scholar
  12. 12.
    Dial, R.B.: Minimal-revenue congestion pricing part II: an efficient algorithm for the general case. Transp. Res. Part B 34, 645–665 (2000)CrossRefGoogle Scholar
  13. 13.
    Duan, Z., Wang, L.: Heuristic algorithms for the inverse mixed integer linear programming problem. J. Global Optim. 51(3), 463–471 (2011)Google Scholar
  14. 14.
    Hansen, P., Jaumard, B., Savard, G.: New branch-and-bound rules for linear bilevel programming. SIAM J. Sci. Stat. Comput. 13, 1194–1217 (1992)CrossRefGoogle Scholar
  15. 15.
    Heuberger, C.: Inverse combinatorial optimization: a survey on problems, methods, and results. J. Comb. Optim. 8, 329–361 (2004)CrossRefGoogle Scholar
  16. 16.
    Hu, J., Mitchell, J.E., Pang, J.S., Bennett, K.P., Kunapuli, G.: On the global solution of linear programs with linear complementarity constraints. SIAM J. Optim. 19(1), 445–471 (2008)CrossRefGoogle Scholar
  17. 17.
    Huang, S.: Inverse problems of some NP-complete problems. Algorithmic Appl. Manag. 3521, 422–426 (2005)Google Scholar
  18. 18.
    Hurkmans, C.W., Meijer, G.J., van Vliet-Vroegindeweij, C., van der Sangen, M.J., Cassee, J.: High-dose simultaneously integrated breast boost using intensity-modulated radiotherapy and inverse optimization. Int. J. Radiat. Oncol. Biol. Phys. 66(3), 923–930 (2006)CrossRefGoogle Scholar
  19. 19.
    Iyengar, G., Kang, W.: Inverse conic programming with applications. Oper. Res. Lett. 33, 319–330 (2005)CrossRefGoogle Scholar
  20. 20.
    Kim, H., Rho, O.: Dual-point design of transonic airfoils using the hybrid inverse optimization method. J. Aircr. 34(5), 612–618 (1997)CrossRefGoogle Scholar
  21. 21.
    Moser, T.J.: Shortest paths calculation of seismic rays. Geophysics 56(1), 5967 (1991)CrossRefGoogle Scholar
  22. 22.
    Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley-Interscience, New York (1999)Google Scholar
  23. 23.
    Stoft, S.: Power System Economics. IEEE Press, Piscataway (2002)CrossRefGoogle Scholar
  24. 24.
    Vicente, L.N., Savard, G., Júdice, J.J.: Discrete linear bilevel programming problem. J. Optim. Theory Appl. 89, 597–614 (1996)CrossRefGoogle Scholar
  25. 25.
    Wang, L.: Cutting plane algorithms for the inverse mixed integer linear programming problem. Oper. Res. Lett. 37(2), 114–117 (2009)CrossRefGoogle Scholar
  26. 26.
    Wang, L., Mazumdar, M., Bailey, M., Valenzuela, J.: Oligopoly models for market price of electricity under demand uncertainty and unit reliability. Eur. J. Oper. Res. 181(3), 1309–1321 (2007)CrossRefGoogle Scholar
  27. 27.
    Yang, C., Zhang, J.: Two general methods for inverse optimization problems. Appl. Math. Lett. 12, 69–72 (1999)CrossRefGoogle Scholar
  28. 28.
    Yang, X.: Complexity of partial inverse assignment problem and partial inverse cut problem. RAIRO Oper. Res. 35, 117–126 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Industrial and Manufacturing Systems EngineeringIowa State UniversityAmesUSA

Personalised recommendations