Advertisement

Journal of Global Optimization

, Volume 57, Issue 4, pp 1359–1373 | Cite as

Minimax theorems for scalar set-valued mappings with nonconvex domains and applications

  • Y. Zhang
  • S. J. Li
Article

Abstract

In this paper, by virtue of the separation theorem of convex sets, we prove a minimax theorem, a cone saddle point theorem and a Ky Fan minimax theorem for a scalar set-valued mapping under nonconvex assumptions of its domains, respectively. As applications, we obtain an existence result for the generalized vector equilibrium problem with a set-valued mapping. Simultaneously, we also obtain some generalized Ky Fan minimax theorems for set-valued mappings, in which the minimization and the maximization of set-valued mappings are taken in the sense of vector optimization.

Keywords

Minimax theorem Cone saddle point Vector optimization Set-valued mapping 

Mathematics Subject Classification (2010)

49J35 49K35 90C47 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Li G.Y.: A note on nonconvex minimax theorem with separable homogeneous polynomials. J. Optim. Theory Appl. 150, 194–203 (2011)CrossRefGoogle Scholar
  2. 2.
    Park S.: The Fan minimax inequality implies the Nash equilibrium theorem. Appl. Math. Lett. 24, 2206–2210 (2011)CrossRefGoogle Scholar
  3. 3.
    Jeyakumar V., Li G.Y., Lee G.M.: A robust von Neumann minimax theorem for zero-sum games under bounded payoff uncertainty. Oper. Res. Lett. 39, 109–114 (2011)CrossRefGoogle Scholar
  4. 4.
    Borwein J.M., Zhuang D.: On Fan’s minimax theorem. Math. Programm 34, 232–234 (1986)CrossRefGoogle Scholar
  5. 5.
    Jeyakumar V.: A generalization of a minimax theorem of Fan via a theorem of the alternative. J. Optim. Theory Appl. 48, 525–533 (1986)CrossRefGoogle Scholar
  6. 6.
    Kim W.K., Kum S.: On a noncompact generalization of Fan’s minimax theorem. Taiwan. J. Math. 14, 347–358 (2010)Google Scholar
  7. 7.
    Fan, K.: A minimax inequality and applications. In: Sisha, O. (ed.) Inequalities, vol. 3, pp. 103–113. Academic, New York (1972)Google Scholar
  8. 8.
    Cho Y.J., Chang S.S., Jung J.S., Kang S.M., Wu X.: Minimax theorems in probabilistic metric spaces. Bull. Austral. Math. Soc. 51, 103–119 (1995)CrossRefGoogle Scholar
  9. 9.
    Cho Y.J., Delavar M.R., Mohammadzadeh S.A., Roohi M.: Coincidence theorems and minimax inequalities in abstract convex spaces, J. Inequal. Appl. 2011, 126 (2011)CrossRefGoogle Scholar
  10. 10.
    Nieuwenhuis J.W.: Some minimax theorems in vector-valued functions. J. Optim. Theory Appl. 40, 463–475 (1983)CrossRefGoogle Scholar
  11. 11.
    Tanaka T.: Some minimax problems of vector-valued functions. J. Optim. Theory Appl. 59, 505–524 (1988)CrossRefGoogle Scholar
  12. 12.
    Shi D.S., Ling C.: Minimax theorems and cone saddle points of uniformly same-order vector-valued functions. J. Optim. Theory Appl. 84, 575–587 (1995)CrossRefGoogle Scholar
  13. 13.
    Ferro F.: A minimax theorem for vector-valued functions. J. Optim. Theory Appl. 60, 19–31 (1989)CrossRefGoogle Scholar
  14. 14.
    Ferro F.: A minimax theorem for vector-valued functions, Part 2. J. Optim. Theory Appl. 68, 35–48 (1991)CrossRefGoogle Scholar
  15. 15.
    Chen G.Y.: A generalized section theorem and a minimax inequality for a vector-valued mapping. Optimization 22, 745–754 (1991)CrossRefGoogle Scholar
  16. 16.
    Chang S.S., Lee G.M., Lee B.S.: Minimax inequalities for vector-valued mappings on W-spaces. J. Math. Anal. Appl. 198, 371–380 (1996)CrossRefGoogle Scholar
  17. 17.
    Li Z.F., Wang S.Y.: A type of minimax inequality for vector-valued mappings. J. Math. Anal. Appl. 227, 68–80 (1998)CrossRefGoogle Scholar
  18. 18.
    Luo, X. Q.: On some generalized Ky Fan minimax inequalities. Fixed Point Theory Appl. Article ID 194671 (2009)Google Scholar
  19. 19.
    Yang M.G., Xu J.P., Huang N.J., Yu S.J.: Minimax theorems for vector-valued mappings in abstract convex spaces. Taiwanese J.Math. 14(2), 719–732 (2010)Google Scholar
  20. 20.
    Gong X.H.: The strong minimax theorem and strong saddle points of vector-valued functions. Nonlinear Anal. 68, 2228–2241 (2008)CrossRefGoogle Scholar
  21. 21.
    Li X.B., Li S.J., Fang Z.M.: A minimax theorem for vector valued functions in lexicographic order. Nonlinear Anal. 73, 1101–1108 (2010)CrossRefGoogle Scholar
  22. 22.
    Gong X.H.: Strong vector equilibrium problems. J. Glob. Optim. 36, 339–349 (2006)CrossRefGoogle Scholar
  23. 23.
    Bigi G., Capaǎtǎ A., Kássay G.: Existence results for strong vector equilibrium problems and their applications. Optimization 1, 1–17 (2010)Google Scholar
  24. 24.
    Zhong, R.Y., Huang, N.J., Cho, Y.J.: Boundedness and nonemptiness of solution sets for set-valued vector equilibrium problems with an application. J. Inequal. Appl. Article ID 936428 (2011)Google Scholar
  25. 25.
    Chen B., Huang N.J., Cho Y.J.: Symmetric strong vector quasi-equilibrium problems in Hausdorff locally convex spaces. J. Inequal. Appl 2011, 56 (2011)CrossRefGoogle Scholar
  26. 26.
    Li S.J., Chen G.Y., Lee G.M.: Minimax theorems for set-valued mappings. J. Optim. Theory Appl. 106, 183–200 (2000)CrossRefGoogle Scholar
  27. 27.
    Li S.J., Chen G.Y., Teo K.L., Yang X.Q.: Generalized minimax inequalities for set-valued mappings. J. Math. Anal. Appl. 281, 707–723 (2003)CrossRefGoogle Scholar
  28. 28.
    Zhang, Y., Li, S.J.: Generalized Ky Fan minimax inequalities for set-valued mappings. (submitted)Google Scholar
  29. 29.
    Zhang Y., Li S.J.: Ky Fan minimax inequalities for set-valued mappings. Fixed Point Theory Appl. 2012, 64 (2012)CrossRefGoogle Scholar
  30. 30.
    Zhang Y., Li S.J., Zhu S.K.: Mininax problems for set-valued mappings. Numer. Funct. Anal. Optim. 33(2), 239–253 (2012)CrossRefGoogle Scholar
  31. 31.
    Jahn J.: Vector optimization: theory, applications, and extensions. Springer, Berlin (2004)CrossRefGoogle Scholar
  32. 32.
    Aubin J.P., Ekeland I.: Applied nonlinear analysis. Wiley, New York (1984)Google Scholar
  33. 33.
    Luc D.T., Vargas C.: A saddle point theorem for set-valued maps. Nonlinear Anal. 18, 1–7 (1992)CrossRefGoogle Scholar
  34. 34.
    Tan K.K., Yu J., Yuan X.Z.: Existence theorems for saddle points of vector-valued maps. J. Optim. Theory Appl. 89, 731–747 (1996)CrossRefGoogle Scholar
  35. 35.
    Lin, Y.C., Chen, H.J.: Solving the set equilibrium problems. Fixed Point Theory Appl. Article ID 945413 (2011)Google Scholar
  36. 36.
    Gerstewitz, C.: Nichtkonvexe trennungssätze und deren anwendung in der theorie der vektoroptimierung. Seminarberichte der Secktion Mathematik der Humboldt-Universität zu Berlin 80, 19-31 (1986)Google Scholar
  37. 37.
    Chen G.Y., Huang X.X., Yang X.Q.: Vector optimization, set-valued and variational analysis. Springer, Berlin (2005)Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.College of Mathematics and StatisticsChongqing UniversityChongqingChina

Personalised recommendations