Skip to main content
Log in

Optimization challenges in the structured low rank approximation problem

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper we illustrate some optimization challenges in the structured low rank approximation (SLRA) problem. SLRA can be described as the problem of finding a low rank approximation of an observed matrix which has the same structure as this matrix (such as Hankel). We demonstrate that the optimization problem arising is typically very difficult: in particular, the objective function is multiextremal even for simple cases. The main theme of the paper is to suggest that the difficulties described in approximating a solution of the SLRA problem open huge possibilities for the application of stochastic methods of global optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abatzoglou T., Mendel J., Harada G.: The constrained total least squares technique and its applications to harmonic superresolution. IEEE Trans. Signal Process. 39(5), 1070–1087 (1991)

    Article  Google Scholar 

  2. Chu M., Funderlic R., Plemmons R.: Structured low rank approximation. Linear Algebra Appl. 366, 157–172 (2003)

    Article  Google Scholar 

  3. Coello Coello C.A., Lamont G.B., Van Veldhuizen D.A.: Evolutionary Algorithms for Solving Multi-objective Problems, 2nd edn, Genetic and Evolutionary Computation Series. Springer, New York (2007)

    Google Scholar 

  4. De Moor B.: Structured total least squares and L2 approximation problems. Linear Algebra Appl. 188–189(1036), 163–205 (1993)

    Article  Google Scholar 

  5. Eckart C., Young G.: The approximation of one matrix by another of lower rank. Psychometrika 1(3), 211–218 (1936)

    Article  Google Scholar 

  6. Gillard J.: Cadzow’s basic algorithm, alternating projections and singular spectrum analysis. Stat. Interface 3(3), 335–343 (2010)

    Article  Google Scholar 

  7. Gillard J., Zhigljavsky A.A.: Analysis of structured low rank approximation as an optimization problem. Informatica 22(4), 489–505 (2011)

    Google Scholar 

  8. Golub G.H., Van Loan C.F.: Matrix Computations, 3rd edn, Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD (1996)

    Google Scholar 

  9. Golyandina N.: On the choice of parameters in singular spectrum analysis and related subspace-based methods. Stat. Interface 3, 259–279 (2010)

    Article  Google Scholar 

  10. Golyandina N., Nekrutkin V., Zhigljavsky A.: Analysis of Time Series Structure: SSA and Related Techniques. Chapman & Hall/CRC, New York (2001)

    Book  Google Scholar 

  11. Kvasov D., Sergeyev Y.: Lipschitz gradients for global optimization in a one-point-based partitioning scheme 236(16), 4042–4054 (2012)

    Google Scholar 

  12. Lemmerling P., Mastronardi N., Van Huffel S.: Efficient implementation of a structured total least squares based speech compression method. Linear Algebra Appl. 366, 295–315 (2003)

    Article  Google Scholar 

  13. Lemmerling P., Van Huffel S.: Analysis of the structured total least squares problem for Hankel/Toeplitz matrices. Numer. Algorithms 27(1), 89–114 (2001)

    Article  Google Scholar 

  14. Markovsky I.: Structured low-rank approximation and its applications. Automatica 44(4), 891–909 (2008)

    Article  Google Scholar 

  15. Markovsky I.: Bibliography on total least squares and related methods. Stat. Interface 3(3), 329–334 (2010)

    Article  Google Scholar 

  16. Markovsky I., Willems J.C., Van Huffel S., De Moor B.: Exact and Approximate Modeling of Linear Systems. SIAM, Philadelphia (2006)

    Book  Google Scholar 

  17. Markovsky I., Willems J.C., Van Huffel S., De Moor B., Pintelon R.: Application of structured total least squares for system identification and model reduction. IEEE Trans. Automat. Control 50(10), 1490–1500 (2005)

    Article  Google Scholar 

  18. Park H., Zhang L., Rosen J.B.: Low rank approximation of a Hankel matrix by structured total least norm. BIT Numer. Math. 39(4), 757–779 (1999)

    Article  Google Scholar 

  19. Pruessner A., O’Leary D.P.: Blind deconvolution using a regularized structured total least norm algorithm. SIAM J. Matrix Anal. Appl. 24(4), 1018–1037 (2003)

    Article  Google Scholar 

  20. Sergeyev Y., Kvasov D.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)

    Article  Google Scholar 

  21. Strongin R., Sergeyev Y.: Global Optimization with Non-convex Constraints. Kluwer, Dordrecht (2000)

    Google Scholar 

  22. Tufts D., Shah A.: Estimation of a signal waveform from noisy data using low-rank approximation to a data matrix. IEEE Trans. Signal Process. 41(4), 1716–1721 (1993)

    Article  Google Scholar 

  23. Van Huffel S.: Enhanced resolution based on minimum variance estimation and exponential data modeling. Signal Process. 33(3), 333–355 (1993)

    Article  Google Scholar 

  24. Yeredor A.: Multiple delays estimation for chirp signals using structured total least squares. Linear Algebra Appl. 391, 261–286 (2004)

    Article  Google Scholar 

  25. Zhigljavsky A.: Theory of Global Random Search. Kluwer, Dordrecht (1991)

    Book  Google Scholar 

  26. Zhigljavsky A., Žilinskas A.: Stochastic Global Optimization. Springer, New York (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly Zhigljavsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillard, J., Zhigljavsky, A. Optimization challenges in the structured low rank approximation problem. J Glob Optim 57, 733–751 (2013). https://doi.org/10.1007/s10898-012-9962-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-012-9962-8

Keywords

Navigation