Skip to main content
Log in

Global search perspectives for multiobjective optimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Extending the notion of global search to multiobjective optimization is far than straightforward, mainly for the reason that one almost always has to deal with infinite Pareto optima and correspondingly infinite optimal values. Adopting Stephen Smale’s global analysis framework, we highlight the geometrical features of the set of Pareto optima and we are led to consistent notions of global convergence. We formulate then a multiobjective version of a celebrated result by Stephens and Baritompa, about the necessity of generating everywhere dense sample sequences, and describe a globally convergent algorithm in case the Lipschitz constant of the determinant of the Jacobian is known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allgower E.L., Georg K.: Simplicial and continuation methods for approximating fixed points and solutions to systems of equations. SIAM Rev. 22(1), 28–85 (1980)

    Article  Google Scholar 

  2. Allgower E.L., Georg K.: Piecewise linear methods for nonlinear equations and optimization. J. Comput. Appl. Math. 124(1–2), 245–261 (2000)

    Article  Google Scholar 

  3. Allgower E.L., Gnutzmann S.: An algorithm for piecewise linear approximation of implicitly defined two-dimensional surfaces. SIAM J. Numer. Anal. 24(2), 452–469 (1987)

    Article  Google Scholar 

  4. Allgower E.L., Sommese A.J.: Piecewise linear approximation of smooth compact fibers. J. Complex. 18(2), 547–556 (2002)

    Article  Google Scholar 

  5. Arnol′d, V.I.: Singularities of smooth mappings. Russ. Math. Surv. 23(1), 1–43 (1968). http://stacks.iop.org/0036-0279/23/1

  6. Askar, S., Tiwari, A.: Multi-objective optimisation problems: a symbolic algorithm for performance measurement of evolutionary computing techniques. In: Ehrgott M. (ed.) EMO 2009, Lecture Notes in Computer Science, vol. 5467, pp. 169–182. Springer (2009)

  7. Benson H., Sayin S.: Towards finding global representations of the efficient set in multiple objective mathematical programming. Naval Res Logist 44(1), 47–67 (1997)

    Article  Google Scholar 

  8. de Melo W.: On the structure of the Pareto set of generic mappings. Bol. Soc. Brasil. Mat. 7(2), 121–126 (1976)

    Article  Google Scholar 

  9. de Melo W.: Stability and optimization of several functions. Topology 15(1), 1–12 (1976)

    Article  Google Scholar 

  10. Guillemin V., Pollack A.: Differential topology. Prentice-Hall (1974). http://www.ulb.tu-darmstadt.de/tocs/59605480.pdf

  11. Hartikainen M., Miettinen K., Wiecek M.M.: Constructing a pareto front approximation for decision making. Math. Methods Oper. Res. 73(2), 209–234 (2011). doi:10.1007/s00186-010-0343-0

    Article  Google Scholar 

  12. Hillermeier C.: Generalized homotopy approach to multiobjective optimization. J. Optim. Theory Appl. 110(3), 557–583 (2001)

    Article  Google Scholar 

  13. Hillermeier, C.: Nonlinear Multiobjective Optimization. International Series of Numerical Mathematics, vol. 135. Birkhäuser Verlag, Basel (2001). A generalized homotopy approach

  14. Jones D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21(4), 345–383 (2001)

    Article  Google Scholar 

  15. Jones D.R., Perttunen C.D., Stuckman B.E.: Lipschitzian optimization without the lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)

    Article  Google Scholar 

  16. Jones D.R., Schonlau M., Welch W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

    Article  Google Scholar 

  17. Khompatraporn C., Pintér J.D., Zabinsky Z.B.: Comparative assessment of algorithms and software for global optimization. J. Glob. Optim. 31(4), 613–633 (2005)

    Article  Google Scholar 

  18. Knowles J.: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput. 10(1), 50–66 (2006)

    Article  Google Scholar 

  19. Levine, H.: Singularities of differentiable mappings. In: C. Wall (ed.) Proceedings of Liverpool Singularities—Symposium I, Lecture Notes in Mathematics, vol. 192, pp. 1–21. Springer, Berlin (1971). doi:10.1007/BFb0066810

  20. Lovison, A.: Singular continuation: generating piecewise linear approximations to pareto sets via global analysis. SIAM J. Optim. 21(2), 463–490 (2011). doi:10.1137/100784746

  21. Lovison A., Rigoni E.: Adaptive sampling with a Lipschitz criterion for accurate metamodeling. Commun. Appl. Ind. Math. 1(2), 110–126 (2010)

    Google Scholar 

  22. Miettinen, K.: Nonlinear multiobjective optimization. International Series in Operations Research & Management Science, vol. 12. Kluwer, Boston (1999)

  23. Miglierina E., Molho E.: Scalarization and stability in vector optimization. J. Optim. Theory Appl. 114(3), 657–670 (2002)

    Article  Google Scholar 

  24. Miglierina E., Molho E., Rocca M.: Critical points index for vector functions and vector optimization. J. Optim. Theory Appl. 138(3), 479–496 (2008). doi:10.1007/s10957-008-9383-5

    Article  Google Scholar 

  25. Pijavskiĭ, S.A.: An algorithm for finding the absolute minimum of functions. In: Theory of Optimal Solutions (Seminar, Kiev, 1967), No. 2 (Russian), pp. 13–24. Akad. Nauk Ukrain. SSR, Kiev (1967)

  26. Pintér, J.D.: Nonlinear optimization with GAMS/LGO. J. Global Optim. 38(1), 79–101 (2007). doi:10.1007/s10898-006-9084-2

  27. Schütze, O., Dell’Aere, A., Dellnitz, M.: On continuation methods for the numerical treatment of multi-objective optimization problems. In: Branke, J., Deb, K., Miettinen, K., Steuer, R.E. (eds.) Practical Approaches to Multi-Objective Optimization No. 04461 in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, Dagstuhl, Germany (2005). http://drops.dagstuhl.de/opus/volltexte/2005/349

  28. Sergeyev, Y.D.: An information global optimization algorithm with local tuning. SIAM J. Optim. 5(4), 858–870 (1995). doi:10.1137/0805041. http://dx.doi.org/10.1137/0805041

  29. Sergeyev Y.D., Kvasov D.E.: Global search based on efficient diagonal partitions and a set of lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)

    Article  Google Scholar 

  30. Shewchuk J.R.: Delaunay refinement algorithms for triangular mesh generation. Comput. Geom. Theory Appl. 22(1–3), 21–74 (2002)

    Article  Google Scholar 

  31. Shubert B.O.: A sequential method seeking the global maximum of a function. SIAM J. Numer. Anal. 9, 379–388 (1972)

    Article  Google Scholar 

  32. Smale S.: What is global analysis?. Am. Math. Month. 76, 4–9 (1969)

    Article  Google Scholar 

  33. Smale, S.: Global analysis and economics. I. Pareto optimum and a generalization of Morse theory. In: Dynamical Systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), pp. 531–544. Academic Press, New York (1973)

  34. Smale, S.: Optimizing several functions. In: Manifolds–Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973), pp. 69–75. Univ. Tokyo Press, Tokyo (1975)

  35. Stephens, C., Baritompa, W.: Global optimization requires global information. J. Optim. Theory Appl. 96, 575–588 (1998). doi:10.1023/A:1022612511618. http://dx.doi.org/10.1023/A:1022612511618

  36. Strongin R.G., Sergeyev Y.D.: Global optimization: fractal approach and non-redundant parallelism. J. Glob. Optim. 27(1), 25–50 (2003)

    Article  Google Scholar 

  37. Thom, R.: Les singularités des applications différentiables. Ann. Inst. Fourier (1956)

  38. Wan Y.H.: Morse theory for two functions. Topology 14(3), 217–228 (1975)

    Article  Google Scholar 

  39. Wan Y.H.: On local Pareto optima. J. Math. Econ. 2(1), 35–42 (1975)

    Article  Google Scholar 

  40. Whitney, H.: On singularities of mappings of euclidean spaces. I. Mappings of the Plane into the plane. Ann. Math. 62(3), 374–410 (1955). http://www.jstor.org/discover/10.2307/1970070

    Google Scholar 

  41. Zhang, B., Wood, G.R., Baritompa, W.P.: Multidimensional bisection: the performance and the context. J. Glob. Optim. 3(3), 337–358 (1993). doi:10.1007/BF01096775

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Lovison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lovison, A. Global search perspectives for multiobjective optimization. J Glob Optim 57, 385–398 (2013). https://doi.org/10.1007/s10898-012-9943-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-012-9943-y

Keywords

Mathematics Subject Classification (2000)

Navigation