Journal of Global Optimization

, Volume 55, Issue 3, pp 521–538 | Cite as

Abstract convexity of radiant functions with applications

Article

Abstract

In this paper, we investigate abstract convexity of non-positive increasing and radiant (IR) functions over a topological vector space. We characterize the essential results of abstract convexity such as support set, subdifferential and polarity of these functions. We also give some characterizations of a certain kind of polarity and separation property for non-convex radiant and co-radiant sets.

Keywords

Monotonic analysis IR function Radiant set Co-radiant set Abstract convexity 

Mathematics Subject Classification

26B25 26A48 

References

  1. 1.
    Abasov T.M., Rubinov A.M.: Subdifferential of Some Classes of Non-smooth Functions, Mathematical Models of Analysis of Non-smooth Models. St. Petersburg University Press, Russia (1996)Google Scholar
  2. 2.
    Doagooei A.R., Mohebi H.: Monotonic analysis over ordered topological vector spaces: IV. J. Global Optim. 45, 355–369 (2009)CrossRefGoogle Scholar
  3. 3.
    Dutta J., Martínez-Legaz J.E., Rubinov A.M.: Monotonic analysis over cones: I. Optimization 53, 165–177 (2004)CrossRefGoogle Scholar
  4. 4.
    Dutta J., Martínez-Legaz J.E., Rubinov A.M.: Monotonic analysis over cones: II. Optimization 53, 529–547 (2004)CrossRefGoogle Scholar
  5. 5.
    Dutta J., Martínez-Legaz J.-E., Rubinov A.M.: Monotonic analysis over cones: III. J. Convex Anal. 15, 581–592 (2008)Google Scholar
  6. 6.
    Martínez-Legaz J.E., Rubinov A.M., Schaible S.: Increasing quasi-concave co-radiant functions with applications in mathematical economics. Math. Methods Oper. Res. 61, 261–280 (2005)CrossRefGoogle Scholar
  7. 7.
    Mohebi H., Doagooei A.R.: Abstract convexity of extended real valued increasing and positively homogeneous functions. J. DCDIS B 17, 659–674 (2010)Google Scholar
  8. 8.
    Mohebi H., Sadeghi H.: Monotonic analysis over non-convex cones. Numer. Funct. Anal. Optim. 26(7–8), 879–895 (2005)CrossRefGoogle Scholar
  9. 9.
    Mohebi H., Sadeghi H.: Monotonic analysis over ordered topological vector apaces: I. Optimization 56(3), 305–321 (2007)CrossRefGoogle Scholar
  10. 10.
    Pallaschke D., Rolewicez S.: Foundations of Mathematical Optimization (Convex Analysis without Linearity). Kluwer Academic Publishers, Boston (1997)CrossRefGoogle Scholar
  11. 11.
    Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton (1970)Google Scholar
  12. 12.
    Rubinov A.M.: Abstract Convexity and Global Optimization. Kluwer Academic Publishers, Dordrecht (2000)CrossRefGoogle Scholar
  13. 13.
    Singer I.: Abstract Convex Analysis. Wiley-Interscience, New York (1997)Google Scholar
  14. 14.
    Zaffaroni A.: Superlinear separation of radiant and co-radiant sets. Optimization 56(1–2), 267–285 (2007)CrossRefGoogle Scholar
  15. 15.
    Zaffaroni A.: Is every radiant function the sum of quasiconvex functions?. Math. Methods Oper. Res. 59, 221–233 (2004)CrossRefGoogle Scholar
  16. 16.
    Zaffaroni A.: Superlinear separation and dual characterizations of radiant functions. Pac. J. Optim. 2(1), 181–202 (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  1. 1.Department of MathematicsShahid Bahonar University of KermanKermanIran
  2. 2.Department of MathematicsKerman Graduate University of TechnologyKermanIran

Personalised recommendations