Advertisement

Journal of Global Optimization

, Volume 55, Issue 3, pp 521–538 | Cite as

Abstract convexity of radiant functions with applications

  • H. Mohebi
Article

Abstract

In this paper, we investigate abstract convexity of non-positive increasing and radiant (IR) functions over a topological vector space. We characterize the essential results of abstract convexity such as support set, subdifferential and polarity of these functions. We also give some characterizations of a certain kind of polarity and separation property for non-convex radiant and co-radiant sets.

Keywords

Monotonic analysis IR function Radiant set Co-radiant set Abstract convexity 

Mathematics Subject Classification

26B25 26A48 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abasov T.M., Rubinov A.M.: Subdifferential of Some Classes of Non-smooth Functions, Mathematical Models of Analysis of Non-smooth Models. St. Petersburg University Press, Russia (1996)Google Scholar
  2. 2.
    Doagooei A.R., Mohebi H.: Monotonic analysis over ordered topological vector spaces: IV. J. Global Optim. 45, 355–369 (2009)CrossRefGoogle Scholar
  3. 3.
    Dutta J., Martínez-Legaz J.E., Rubinov A.M.: Monotonic analysis over cones: I. Optimization 53, 165–177 (2004)CrossRefGoogle Scholar
  4. 4.
    Dutta J., Martínez-Legaz J.E., Rubinov A.M.: Monotonic analysis over cones: II. Optimization 53, 529–547 (2004)CrossRefGoogle Scholar
  5. 5.
    Dutta J., Martínez-Legaz J.-E., Rubinov A.M.: Monotonic analysis over cones: III. J. Convex Anal. 15, 581–592 (2008)Google Scholar
  6. 6.
    Martínez-Legaz J.E., Rubinov A.M., Schaible S.: Increasing quasi-concave co-radiant functions with applications in mathematical economics. Math. Methods Oper. Res. 61, 261–280 (2005)CrossRefGoogle Scholar
  7. 7.
    Mohebi H., Doagooei A.R.: Abstract convexity of extended real valued increasing and positively homogeneous functions. J. DCDIS B 17, 659–674 (2010)Google Scholar
  8. 8.
    Mohebi H., Sadeghi H.: Monotonic analysis over non-convex cones. Numer. Funct. Anal. Optim. 26(7–8), 879–895 (2005)CrossRefGoogle Scholar
  9. 9.
    Mohebi H., Sadeghi H.: Monotonic analysis over ordered topological vector apaces: I. Optimization 56(3), 305–321 (2007)CrossRefGoogle Scholar
  10. 10.
    Pallaschke D., Rolewicez S.: Foundations of Mathematical Optimization (Convex Analysis without Linearity). Kluwer Academic Publishers, Boston (1997)CrossRefGoogle Scholar
  11. 11.
    Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton (1970)Google Scholar
  12. 12.
    Rubinov A.M.: Abstract Convexity and Global Optimization. Kluwer Academic Publishers, Dordrecht (2000)CrossRefGoogle Scholar
  13. 13.
    Singer I.: Abstract Convex Analysis. Wiley-Interscience, New York (1997)Google Scholar
  14. 14.
    Zaffaroni A.: Superlinear separation of radiant and co-radiant sets. Optimization 56(1–2), 267–285 (2007)CrossRefGoogle Scholar
  15. 15.
    Zaffaroni A.: Is every radiant function the sum of quasiconvex functions?. Math. Methods Oper. Res. 59, 221–233 (2004)CrossRefGoogle Scholar
  16. 16.
    Zaffaroni A.: Superlinear separation and dual characterizations of radiant functions. Pac. J. Optim. 2(1), 181–202 (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  1. 1.Department of MathematicsShahid Bahonar University of KermanKermanIran
  2. 2.Department of MathematicsKerman Graduate University of TechnologyKermanIran

Personalised recommendations