Skip to main content
Log in

Convex relaxations and MIQCQP reformulations for a class of cardinality-constrained portfolio selection problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper we investigate a class of cardinality-constrained portfolio selection problems. We construct convex relaxations for this class of optimization problems via a new Lagrangian decomposition scheme. We show that the dual problem can be reduced to a second-order cone program problem which is tighter than the continuous relaxation of the standard mixed integer quadratically constrained quadratic program (MIQCQP) reformulation. We then propose a new MIQCQP reformulation which is more efficient than the standard MIQCQP reformulation in terms of the tightness of the continuous relaxations. Computational results are reported to demonstrate the tightness of the SOCP relaxation and the effectiveness of the new MIQCQP reformulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexander G.J., Baptista A.M.: A comparison of VaR and CVaR constraints on portfolio selection with the mean-variance model. Manag. Sci. 50, 1261–1273 (2004)

    Article  Google Scholar 

  2. Angelelli R., Mansini R., Speranza M.G.: A comparison of MAD and CVaR models with real features. J. Banking Finance 32, 1188–1197 (2007)

    Article  Google Scholar 

  3. Ben-Tal, A., Nemirovski, A.S.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. MPS-SIAM Series on Optimization. Society for Industrial Mathematics, Philadelphia, PA (2001)

  4. Bertsimas D., Shioda R.: Algorithm for cardinality-constrained quadratic optimization. Comput. Optim. Appl. 43, 1–22 (2009)

    Article  Google Scholar 

  5. Bienstock D.: Computational study of a family of mixed-integer quadratic programming problems. Math. Program. 74, 121–140 (1996)

    Google Scholar 

  6. Boginski V., Butenko S., Pardalos P.M.: Statistical analysis of financial networks. Comput. Stat. Data Anal. 48, 431–443 (2005)

    Article  Google Scholar 

  7. Boginski V., Butenko S., Pardalos P.M.: Mining market data: a network approach. Comput. Oper. Res. 33, 3171–3184 (2006)

    Article  Google Scholar 

  8. Bonami P., Lejeune M.A.: An exact solution approach for portfolio optimization problems under stochastic and integer constraints. Oper. Res. 57, 650–670 (2009)

    Article  Google Scholar 

  9. Burmeister, E., Roll, R., Ross, S.A.: Using macroeconomic factors to control portfolio risk. Tech. rep. (2003). Available at: http://www.birr.com/Using_Macroeconomic_Factors.pdf

  10. Ceria S., Margot F., Renshaw A., Saxena A.: Novel approaches to portfolio construction: multiple risk models and multisolution generation. In: Satchell, S. (ed.) Optimizing Optimization: The Next Generation of Optimization Applications & Theory, pp. 23–52. Academic Press and Elsevier, Amsterdam (2010)

    Google Scholar 

  11. Connor G.: The three types of factor models: a comparison of their explanatory power. Financial Analysts J. 51, 42–46 (1995)

    Article  Google Scholar 

  12. Duffie D., Pan J.: An overview of value at risk. J. Deriv. 4, 7–49 (1997)

    Article  Google Scholar 

  13. Fama E.F., French K.R.: The cross-section of expected stock returns. J. Finance 47, 427–465 (1992)

    Article  Google Scholar 

  14. Fama E.F., French K.R.: Size and book-to-market factors in earnings and returns. J. Finance 50, 131–155 (1995)

    Article  Google Scholar 

  15. Frangioni A., Gentile C.: Perspective cuts for a class of convex 0–1 mixed integer programs. Math. Program. 106, 225–236 (2006)

    Article  Google Scholar 

  16. Frangioni A., Gentile C.: SDP diagonalizations and perspective cuts for a class of nonseparable MIQP. Oper. Res. Lett. 35, 181–185 (2007)

    Article  Google Scholar 

  17. Frangioni A., Gentile C.: A computational comparison of reformulations of the perspective relaxation: SOCP vs. cutting planes. Oper. Res. Lett. 37, 206–210 (2009)

    Article  Google Scholar 

  18. Günlük O., Linderoth J.: Perspective reformulations of mixed integer nonlinear programs with indicator variables. Math. Program. 124, 183–205 (2010)

    Article  Google Scholar 

  19. IBM ILOG CPLEX: IBM ILOG CPLEX 12.1 User’s Manual for CPLEX (2010)

  20. Jorion P.: Value at Risk: The New Benchmark for Controlling Market Risk. McGraw-Hill, Chicago (1997)

    Google Scholar 

  21. Kolbert F., Wormald L.: Robust portfolio optimization using second-order cone programming. In: Satchell, S. (ed.) Optimizing Optimization: The Next Generation of Optimization Applications & Theory, pp. 3–22. Academic Press and Elsevier, Amsterdam (2010)

    Google Scholar 

  22. Konno H., Yamazaki H.: Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Manag. Sci. 37, 519–531 (1991)

    Article  Google Scholar 

  23. Li D., Ng W.L.: Optimal dynamic portfolio selection: multiperiod mean-variance formulation. Math. Finance 10, 387–406 (2000)

    Article  Google Scholar 

  24. Markowitz H.M.: Portfolio selection. J. Finance 7, 77–91 (1952)

    Google Scholar 

  25. Markowitz H.M.: Portfolio Selection: Efficient Diversification of Investments. Wiley, New York (1959)

    Google Scholar 

  26. Moazeni S.: A note on the dynamic liquidity trading problem with a mean-variance objective. Optim. Lett. 5, 113–124 (2011)

    Article  Google Scholar 

  27. Pardalos P.M., Sandström M., Zopounidis C.: On the use of optimization models for portfolio selection: a review and some computational results. Comput. Econ. 7, 227–244 (1994)

    Article  Google Scholar 

  28. Pardalos, P.M., Tsitsiringos, V. (eds.): Financial Engineering, Supply Chain and E-Commerce. Kluwer, Dordrecht (2002)

    Google Scholar 

  29. Pardalos, P.M., Wolkowicz, H. (eds.): Topics in Semidefinite and Interior-Point Methods. Fields Institute Communications Series: vol. 18. American Mathematical Society, Providence (1998)

    Google Scholar 

  30. Rockafellar R.T., Uryasev S.: Optimization of conditional Value-at-Risk. J. Risk 2, 21–42 (2000)

    Google Scholar 

  31. Rockafellar R.T., Uryasev S.: Conditional Value-at-Risk for general loss distributions. J. Banking Finance 26, 1443–1471 (2002)

    Article  Google Scholar 

  32. Sharpe W.F.: A simplified model for portfolio analysis. Manag. Sci. 9, 277–293 (1963)

    Article  Google Scholar 

  33. Shaw D., Liu S., Kopman L.: Lagrangian relaxation procedure for cardinality-constrained portfolio optimization. Optim. Methods Softw. 23, 411–420 (2008)

    Article  Google Scholar 

  34. Vandenberghe L., Boyd S.: Semidefinite programming. SIAM Rev. 38, 49–95 (1996)

    Article  Google Scholar 

  35. Young M.R.: A minimax portfolio selection rule with linear programming solution. Manag. Sci. 44, 673–683 (1998)

    Article  Google Scholar 

  36. Zhou X.Y., Li D.: Continuous-time mean-variance portfolio selection: a stochastic LQ framework. Appl. Math. Optim. 42, 19–33 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. J. Zheng.

Additional information

This work was supported by National Natural Science Foundation of China under Grants 10971034, 11101092 and 71071036, and by the Joint NSFC/RGC grants under Grant 71061160506.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, X.T., Zheng, X.J., Zhu, S.S. et al. Convex relaxations and MIQCQP reformulations for a class of cardinality-constrained portfolio selection problems. J Glob Optim 56, 1409–1423 (2013). https://doi.org/10.1007/s10898-012-9842-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-012-9842-2

Keywords

Navigation