Multiagent cooperation for solving global optimization problems: an extendible framework with example cooperation strategies

Abstract

This paper proposes the use of multiagent cooperation for solving global optimization problems through the introduction of a new multiagent environment, MANGO. The strength of the environment lays in its flexible structure based on communicating software agents that attempt to solve a problem cooperatively. This structure allows the execution of a wide range of global optimization algorithms described as a set of interacting operations. At one extreme, MANGO welcomes an individual non-cooperating agent, which is basically the traditional way of solving a global optimization problem. At the other extreme, autonomous agents existing in the environment cooperate as they see fit during run time. We explain the development and communication tools provided in the environment as well as examples of agent realizations and cooperation scenarios. We also show how the multiagent structure is more effective than having a single nonlinear optimization algorithm with randomly selected initial points.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Barbucha D., Czarnowski I., Jȩdrzejowicz P., Ratajczak-Ropel E., Wierzbowska I.: JABAT middleware as a tool for solving optimization problems. In: Nguyen, N., Kowalczyk, R. (eds) Transactions on Computational Collective Intelligence II, vol. 6450 of Lecture Notes in Computer Science, pp. 181–195. Springer, Berlin (2010)

    Google Scholar 

  2. 2

    Barbucha, D., Czarnowski, I., Jedrzejowicz, P., Ratajczak, E., Wierzbowska, I.: JADE-based A-Team as a tool for implementing population based algorithms. In: Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications (ISDA), pp. 144–146 (2006)

  3. 3

    Bellifemine, F., Poggi, A., Rimassa, G.: Jade: a fipa2000 compliant agent development environment. In: AGENTS ’01: Proceedings of the fifth international conference on Autonomous agents, pp. 216–217. ACM, New York, NY, USA (2001)

  4. 4

    Bordini R.H., Wooldridge M., Hübner J.F.: Programming Multi-Agent Systems in AgentSpeak using (Jason Wiley Series in Agent Technology). Wiley, New York (2007)

    Google Scholar 

  5. 5

    Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In: Proceedings of European Conference on Artificial Life, pp. 134–142 (1991)

  6. 6

    Crainic T.G., Gendreau M., Hansen P., Miladenovic N.: Cooperative parallel variable neighborhood search for the p-median. J. Heuristics 10, 293–314 (2004)

    Article  Google Scholar 

  7. 7

    Birbil Ş. I., Fang S.-C.: An electromagnetism-like mechanism for global optimization. J. Glob. Optim. 25(3), 263–282 (2003)

    Article  Google Scholar 

  8. 8

    Dignum, F., Greaves, M. (eds): Issues in Agent Communication. Springer, London (2000)

    Google Scholar 

  9. 9

    Dignum, V.: Handbook of Research on Multi-Agent Systems: Semantics and Dynamics of Organizational Models, chapter 1. IGI Global (2009)

  10. 10

    Durfee, E.: Distributed problem solving and planning. In: Luck Michael, Mark Vladimr, tepnkov Olga, and Trappl Robert (eds), Multi-Agent Systems and Applications, vol. 2086 of Lecture Notes in Computer Science, pp. 118–149. Springer Berlin/Heidelberg (2006)

  11. 11

    Eberhard, R., Kennedy, J.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

  12. 12

    Gendreau M., Crainic T.G.: Cooperative parallel tabu search for capacitated network design. J. Heuristics 8, 601–627 (2002)

    Article  Google Scholar 

  13. 13

    Günay A., Birbil F., Birbil Ş.I., Yolum P.: Solving global optimization problems using mango. In: Hakansson, A., Nguyen, N.T., Hartung, R., Howlett, R.J., Jain, L.C. (eds) Agent and Multi-Agent Systems: Technologies and Applications, vol. 5559 of Lecture Notes in Artificial Intelligence, pp. 783792. Springer, Berlin (2009)

    Google Scholar 

  14. 14

    Hapner M., Burridge R., Sharma R., Fialli J., Haase K.: Java Message Service API and Tutorial. Addison-Wesley Professional, Reading (2002)

    Google Scholar 

  15. 15

    Huhns, M.N., Singh, M.P.: Agents and multiagent systems: Themes, approaches, and challenges. In: Readings in Agents, chapter 1, pp. 1–23. Morgan Kaufmann (1998)

  16. 16

    Kaszkurewicz E., Bhaya A., Baran B.: Parallel asynchronous team algorithms: Convergence and performance analysis. IEEE Trans. Parallel Distrib. Syst. 7(7), 677–688 (1996)

    Article  Google Scholar 

  17. 17

    Kraus S.: Negotiation and cooperation in multi-agent environments. Artif. Intell. 94(1-2), 79–97 (1997)

    Article  Google Scholar 

  18. 18

    Kerçelli, L., Sezer, A., Öztoprak, F., Birbil, Ş. I., Yolum, P.: MANGO: A multiagent environment for global optimization. In: Proceedings of the AAMAS Workshop on Optimization in Multiagent Systems, pp. 86–91, Estoril, Portugal (2008)

  19. 19

    Lau, H.C., Wang, H.: A multi-agent approach for solving optimization problems involving expensive resources. In: Proceedings of the ACM Symposium on Applied Computing, pp. 79–83 (2005)

  20. 20

    Luke S., Cioffi-Revilla C., Panait L., Sullivan K., Balan G.: Mason: A multiagent simulation environment. Simulation 81, 517–527 (2005)

    Article  Google Scholar 

  21. 21

    Melab N., Talbi E.-G., Cahon S.: Paradiseo: A framework for the reusable design of parallel and distributed metaheuristics. J. Heuristics 10, 357–380 (2004)

    Article  Google Scholar 

  22. 22

    Modi P.J., Shena W., Tambe M., Yokoo M.: Adopt: Asynchronous distributed constraint optimization with quality guarantees. Artif. Intell. 161, 149–180 (2005)

    Article  Google Scholar 

  23. 23

    Moré J.J., Garbow B.S., Hillstrom K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7(1), 17–41 (1981)

    Article  Google Scholar 

  24. 24

    Neumaier A.: Complete search in continuous global optimization and constraint satisfaction. Acta Numerica 13, 271–369 (2004)

    Article  Google Scholar 

  25. 25

    Nocedal J., Wright S.J.: Numerical Optimization. Springer, Berlin (2006)

    Google Scholar 

  26. 26

    North M.J., Howe T.R., Collier N.T., Vos J.R.: A declarative model assembly infrastructure for verification and validation. In: Takahashi, S., Sallach, D., Rouchier, J. (eds) Advancing Social Simulation: The First World Congress, pp. 129–140. Springer, Japan (2007)

    Google Scholar 

  27. 27

    Östermark R.: A flexible platform for mixed-integer non-linear programming problems. Kybernetes 36(5/6), 652–670 (2007)

    Article  Google Scholar 

  28. 28

    R.: Scalability of the genetic hybrid algorithm on a parallel supercomputer. Kybernetes 37(9/10), 1492–1507 (2008)

    Article  Google Scholar 

  29. 29

    Pardalos P.M., Romeijn H.E., Tuy H.: Recent developments and trends in global optimization. J. Comput. Appl. Math. 124(1-2), 209–228 (2000)

    Article  Google Scholar 

  30. 30

    Schoen F.: Stochastic techniques for global optimization: A survey of recent advances. J. Glob. Optim. 1(3), 207–228 (1991)

    Article  Google Scholar 

  31. 31

    Shehory O., Kraus S.: Methods for task allocation via agent coalition formation. Artif. Intell. 101(1-2), 165–200 (1998)

    Article  Google Scholar 

  32. 32

    Siirola D.S., Hauan S., Westerberg A.W.: Toward agent-based process systems engineering: Proposed framework and application to non-convex optimization. Comput. Chem. Eng. 27, 1801–1811 (2003)

    Article  Google Scholar 

  33. 33

    Siirola D.S., Hauan S., Westerberg A.W.: Computing pareto fronts using distributed agents. Comput. Chem. Eng. 29, 113–126 (2004)

    Article  Google Scholar 

  34. 34

    Singh M.P., Huhns M.N.: Service-Oriented Computing: Semantics, Processes, Agents. Wiley, Chichester (2005)

    Google Scholar 

  35. 35

    Staab S., Studer R., Schnurr H., Sure Y.: Knowledge processes and ontologies. IEEE Intell. Syst. 16, 26–34 (2001)

    Article  Google Scholar 

  36. 36

    Talbi E.-G.: A taxonomy of hybrid metaheuristics. J. Heuristics 8, 541–564 (2002)

    Article  Google Scholar 

  37. 37

    Talukdar S., Baerentzen L., Gove A., De Souza P.: Asynchronous teams: Cooperation schemes for autonomous agents. J. Heuristics 4(4), 295–321 (1998)

    Article  Google Scholar 

  38. 38

    Wales D.J., Doye J.P.K.: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101(28), 5111–5116 (1997)

    Article  Google Scholar 

  39. 39

    Winikoff M.: Jack intelligent agents: An industrial strength platform. In: Weiss, G., Bordini, R., Dastani, M., Dix, J., Seghrouchni, A.F. (eds) Multi-Agent Programming, vol. 15 of Multiagent Systems, Artificial Societies, and Simulated Organizations, pp. 175–193. Springer, US (2005)

    Google Scholar 

  40. 40

    Yokoo M., Ishida T.: Search algorithms for agents. In: Weiss, G. (eds) Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence, The MIT Press, Cambridge (1990)

    Google Scholar 

  41. 41

    Zlotkin, G., Rosenschein, J.S.: Negotiation and task sharing among autonomous agents in cooperative domains. In: Proceedings of the 11th International Joint Conference on Artificial intelligence—vol. 2, IJCAI’89, pp. 912–917. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, (1989)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pınar Yolum.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aydemir, F.B., Günay, A., Öztoprak, F. et al. Multiagent cooperation for solving global optimization problems: an extendible framework with example cooperation strategies. J Glob Optim 57, 499–519 (2013). https://doi.org/10.1007/s10898-012-0012-3

Download citation

Keywords

  • Multiagent systems
  • Global optimization
  • Cooperation