Journal of Global Optimization

, Volume 57, Issue 4, pp 1065–1089 | Cite as

Selection of intensity modulated radiation therapy treatment beam directions using radial basis functions within a pattern search methods framework

  • H. Rocha
  • J. M. Dias
  • B. C. Ferreira
  • M. C. Lopes


The selection of appropriate radiation incidence directions in radiation therapy treatment planning is important for the quality of the treatment plan, both for appropriate tumor coverage and for better organ sparing. The objective of this paper is to discuss the benefits of using radial basis functions within a pattern search methods framework in the optimization of the highly non-convex beam angle optimization (BAO) problem. Pattern search methods are derivative-free optimization methods that require few function value evaluations to converge and have the ability to avoid local entrapment. These two characteristics gathered together make pattern search methods suited to address the BAO problem. The pattern search methods framework is composed by a search step and a poll step at each iteration. The poll step performs a local search in a mesh neighborhood and assures convergence to a local minimizer or stationary point. The search step provides the flexibility for a global search since it allows searches away from the neighborhood of the current iterate. Radial basis functions are used and tested in this step both to influence the quality of the local minimizer found by the method and to obtain a better coverage of the search space in amplitude. A set of retrospective treated cases of head-and-neck tumors at the Portuguese Institute of Oncology of Coimbra is used to discuss the benefits of using this approach in the optimization of the BAO problem.


Intensity modulated radiation therapy Beam angle optimization Pattern search methods Radial basis functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alberto P., Nogueira F., Rocha H., Vicente L.N.: Pattern search methods for user-provided points: application to molecular geometry problems. SIAM J. Optim. 14, 1216–1236 (2004)CrossRefGoogle Scholar
  2. 2.
    Aleman D.M., Glaser D., Romeijn H.E., Dempsey J.F.: A primal-dual interior point algorithm for fluence map optimization in intensity modulated radiation therapy treatment planning. Phys. Med. Biol. 55, 5467–5482 (2010)CrossRefGoogle Scholar
  3. 3.
    Aleman D.M., Kumar A., Ahuja R.K., Romeijn H.E., Dempsey J.F.: Neighborhood search approaches to beam orientation optimization in intensity modulated radiation therapy treatment planning. J. Global Optim. 42, 587–607 (2008)CrossRefGoogle Scholar
  4. 4.
    Aleman, D.M., Mišić, V.V., Sharpe, M.B.: Computational enhancements to fluence map optimization for total marrow irradiation using IMRT. Comput. Oper. Res. (Forthcoming). doi: 10.1016/j.cor.2011.05.028
  5. 5.
    Aleman D.M., Romeijn H.E., Dempsey J.F.: A response surface approach to beam orientation optimization in intensity modulated radiation therapy treatment planning. INFORMS J. Comput. Computat. Biol. Med. Appl. 21, 62–76 (2009)CrossRefGoogle Scholar
  6. 6.
    Bortfeld T., Schlegel W.: Optimization of beam orientations in radiation therapy: some theoretical considerations. Phys. Med. Biol. 38, 291–304 (1993)CrossRefGoogle Scholar
  7. 7.
    Cheong K., Suh T., Romeijn H., Li J., Dempsey J.: Fast Nonlinear Optimization with Simple Bounds for IMRT Planning. Med. Phys. 32, 1975–1976 (2005)CrossRefGoogle Scholar
  8. 8.
    Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to derivative-free optimization. SIAM, Philadelphia (2009)Google Scholar
  9. 9.
    Craft D.: Local beam angle optimization with linear programming and gradient search. Phys. Med. Biol. 52, 127–135 (2007)CrossRefGoogle Scholar
  10. 10.
    Craft D., Halabi T., Shih H., Bortfeld T.: Approximating convex Pareto surfaces in multiobjective radiotherapy planning. Med. Phys. 33, 3399–3407 (2006)CrossRefGoogle Scholar
  11. 11.
    Custódio A.L., Rocha H., Vicente L.N.: Incorporating minimum Frobenius norm models in direct search. Comput. Optim. Appl. 46, 265–278 (2010)CrossRefGoogle Scholar
  12. 12.
    Custódio A.L., Vicente L.N.: Using sampling and simplex derivatives in pattern search methods. SIAM J. Optim. 18, 537–555 (2007)CrossRefGoogle Scholar
  13. 13.
    Das S.K., Marks L.B.: Selection of coplanar or non coplanar beams using three-dimensional optimization based on maximum beam separation and minimized nontarget irradiation. Int. J. Radiat. Oncol. Biol. Phys. 38, 643–655 (1997)CrossRefGoogle Scholar
  14. 14.
    Davis C.: Theory of positive linear dependence. Am. J. Math. 76, 733–746 (1954)CrossRefGoogle Scholar
  15. 15.
    Deasy J.O., Blanco A.I., Clark V.H.: CERR: a computational environment for radiotherapy research. Med. Phys. 30, 979–985 (2003)CrossRefGoogle Scholar
  16. 16.
    Deasy J.O., Lee E.K., Bortfeld T., Langer M., Zakarian K., Alaly J., Zhang Y., Liu H., Mohan R., Ahuja R., Pollack A., Purdy J., Rardin R.: A collaboratory for radiation theraphy planning optimization research. Ann. Oper. Res. 148, 55–63 (2006)CrossRefGoogle Scholar
  17. 17.
    Djajaputra D., Wu Q., Wu Y., Mohan R.: Algorithm and performance of a clinical IMRT beam-angle optimization system. Phys. Med. Biol. 48, 3191–3212 (2003)CrossRefGoogle Scholar
  18. 18.
    Ehrgott M., Holder A., Reese J.: Beam selection in radiotherapy design. Linear Algebra Appl. 428, 1272–1312 (2008)CrossRefGoogle Scholar
  19. 19.
    Goitein M., Abrams M., Rowell D., Pollari H., Wiles J.: Multidimensional treatment planning: II. Beam’s eye-view, back projection, and projection through CT sections. Int. J. Radiat. Oncol. Biol. Phys. 9, 789–797 (1983)CrossRefGoogle Scholar
  20. 20.
    Haas O.C., Burnham K.J., Mills J.: Optimization of beam orientation in radiotherapy using planar geometry. Phys. Med. Biol. 43, 2179–2193 (1998)CrossRefGoogle Scholar
  21. 21.
    Lee C-H., Aleman D.M., Sharpe M.B.: A set cover approach to fast beam orientation optimization in intensity modulated radiation therapy for total marrow irradiation. Phys. Med. Biol. 56, 5679–5695 (2011)CrossRefGoogle Scholar
  22. 22.
    Lee E.K., Fox T., Crocker I.: Integer programming applied to intensity-modulated radiation therapy treatment planning. Ann. Oper. Res. 119, 165–181 (2003)CrossRefGoogle Scholar
  23. 23.
    Li Y., Yao D., Yao J., Chen W.: A particle swarm optimization algorithm for beam angle selection in intensity modulated radiotherapy planning. Phys. Med. Biol. 50, 3491–3514 (2005)CrossRefGoogle Scholar
  24. 24.
    Li Y., Yao J., Yao D.: Automatic beam angle selection in IMRT planning using genetic algorithm. Phys. Med. Biol. 49, 1915–1932 (2004)CrossRefGoogle Scholar
  25. 25.
    Lim G.J., Cao W.: A two-phase method for selecting IMRT treatment beam angles: Branch-and-Prune and local neighborhood search. Eur. J. Oper. Res. 217, 609–618 (2012)CrossRefGoogle Scholar
  26. 26.
    Lim G.J., Choi J., Mohan R.: Iterative solution methods for beam angle and fluence map optimization in intensity modulated radiation therapy planning. OR Spect. 30, 289–309 (2008)CrossRefGoogle Scholar
  27. 27.
    Lim G.J., Ferris M.C., Wright S.J., Shepard D.M., Earl M.A.: An optimization framework for conformal radiation treatment planning. INFORMS J. Comput. 19, 366–380 (2007)CrossRefGoogle Scholar
  28. 28.
    Liu H.H., Jauregui M., Zhang X., Wang X., Dongand L., Mohan R.: Beam angle optimization and reduction for intensity-modulated radiation therapy of non-small-cell lung cancers. Int. J. Radiat. Oncol. Biol. Phys. 65, 561–572 (2006)CrossRefGoogle Scholar
  29. 29.
    Lu H.M., Kooy H.M., Leber Z.H., Ledoux R.J.: Optimized beam planning for linear accelerator-based stereotactic radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 39, 1183–1189 (1997)CrossRefGoogle Scholar
  30. 30.
    MATLAB, The MathWorks Inc.
  31. 31.
    Meedt G., Alber M., Nüsslin F.: Non-coplanar beam direction optimization for intensity-modulated radiotherapy. Phys. Med. Biol. 48, 2999–3019 (2003)CrossRefGoogle Scholar
  32. 32.
    Mišić V.V., Aleman D.M., Sharpe M.B.: Neighborhood search approaches to non-coplanar beam orientation optimization for total marrow irradiation using IMRT. Eur. J. Oper. Res. 205, 522–527 (2010)CrossRefGoogle Scholar
  33. 33.
    Moré J., Wild S.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20, 172–191 (2009)CrossRefGoogle Scholar
  34. 34.
    Nelder J.A., Mead R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)CrossRefGoogle Scholar
  35. 35.
    Powell M.: Radial basis function methods for interpolation to functions of many variables. HERMIS Int. J. Comput. Maths Appl. 3, 1–23 (2002)Google Scholar
  36. 36.
    Preciado-Walters F., Langer M.P., Rardin R.L., Thai V.: Column generation for IMRT cancer therapy optimization with implementable segments. Ann. Oper. Res. 148, 65–79 (2006)CrossRefGoogle Scholar
  37. 37.
    Pugachev A., Xing L.: Pseudo beam’s-eye-view as applied to beam orientation selection in intensity-modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 51, 1361–1370 (2001)CrossRefGoogle Scholar
  38. 38.
    Pugachev A., Xing L.: Computer-assisted selection of coplanar beam orientations in intensity-modulated radiation therapy. Phys. Med. Biol. 46, 2467–2476 (2001)CrossRefGoogle Scholar
  39. 39.
    Rocha H.: On the selection of the most adequate radial basis function. Appl. Math. Model. 33, 1573–1583 (2009)CrossRefGoogle Scholar
  40. 40.
    Rocha, H., Dias, J.M., Ferreira, B.C., Lopes, M.C.: Beam angle optimization using pattern search methods: initial mesh-size considerations. In: Proceedings of the 1st International Conference on Operations Research and Enterprise Systems (2012)Google Scholar
  41. 41.
    Rocha H., Li W., Hahn A.: Principal component regression for fitting wing weight data of subsonic transports. J. Aircraft 43, 1925–1936 (2006)CrossRefGoogle Scholar
  42. 42.
    Romeijn H.E., Ahuja R.K., Dempsey J.F., Kumar A.: A column generation approach to radiation therapy treatment planning using aperture modulation. SIAM J. Optim. 15, 838–862 (2005)CrossRefGoogle Scholar
  43. 43.
    Romeijn H.E., Ahuja R.K., Dempsey J.F., Kumar A., Li J.: A novel linear programming approach to fluence map optimization for intensity modulated radiation therapy treatment planing. Phys. Med. Biol. 48, 3521–3542 (2003)CrossRefGoogle Scholar
  44. 44.
    Romeijn H.E., Dempsey J.F., Li J.: A unifying framework for multi-criteria fluence map optimization models. Phys. Med. Biol. 49, 1991–2013 (2004)CrossRefGoogle Scholar
  45. 45.
    Rowbottom C.G., Webb S., Oldham M.: Improvements in prostate radiotherapy from the customization of beam directions. Med. Phys. 25, 1171–1179 (1998)CrossRefGoogle Scholar
  46. 46.
    Schaback R., Wendland H.: Characterization and Construction of Radial Basis Functions. Multivariate Approximation and Applications, pp. 1–24. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  47. 47.
    Schreibmann E., Lahanas M., Xing L., Baltas D.: Multiobjective evolutionary optimization of the number of beams, their orientations and weights for intensity-modulated radiation therapy. Phys. Med. Biol. 49, 747–770 (2004)CrossRefGoogle Scholar
  48. 48.
    Soderstrom S., Brahme A.:: Optimization of the dose delivery in a few field techniques using radiobiological objective functions. Med. Phys. 20, 1201–1210 (1993)CrossRefGoogle Scholar
  49. 49.
    Spirou S., Chui C.S.: A gradient inverse planning algorithm with dose-volume constraints. Med. Phys. 25, 321–333 (1998)CrossRefGoogle Scholar
  50. 50.
    Stein J., Mohan R., Wang X.H., Bortfeld T., Wu Q., Preiser K., Ling C.C., Schlegel W.: Number and orientation of beams in intensity-modulated radiation treatments. Med. Phys. 24, 149–160 (1997)CrossRefGoogle Scholar
  51. 51.
    Stone M.: Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. 36, 111–147 (1974)Google Scholar
  52. 52.
    Torczon V.: On the convergence of pattern search algorithms. SIAM J. Optim. 7, 1–25 (1997)CrossRefGoogle Scholar
  53. 53.
    Tu, J.: Cross-validated multivariate metamodeling methods for physics-based computer simulations. In: Proceedings of the IMAC-XXI (2003)Google Scholar
  54. 54.
    Tu, J., Jones, D.R.: Variable screening in metamodel design by cross-validated moving least squares method. In: Proceedings of the 44th AIAA (2003)Google Scholar
  55. 55.
    Vaz A.I.F., Vicente L.N.: A particle swarm pattern search method for bound constrained global optimization. J. Global Optim. 39, 197–219 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • H. Rocha
    • 1
  • J. M. Dias
    • 2
  • B. C. Ferreira
    • 3
  • M. C. Lopes
    • 4
  1. 1.INESCCCoimbraPortugal
  2. 2.FEUCCoimbraPortugal
  3. 3.I3N, Campus Universitário de SantiagoAveiroPortugal
  4. 4.IPOC-FG, EPECoimbraPortugal

Personalised recommendations