Skip to main content
Log in

Rigorous filtering using linear relaxations

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper presents rigorous filtering methods for continuous constraint satisfaction problems based on linear relaxations, designed to efficiently handle the linear inequalities coming from a linear relaxation of quadratic constraints. Filtering or pruning stands for reducing the search space of constraint satisfaction problems. Discussed are old and new approaches for rigorously enclosing the solution set of linear systems of inequalities, as well as different methods for computing linear relaxations. This allows custom combinations of relaxation and filtering. Care is taken to ensure that all methods correctly account for rounding errors in the computations. The methods are implemented in the GloptLab environment for solving quadratic constraint satisfaction problems. Demonstrative examples and tests comparing the different linear relaxation methods are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Khayyal F.: Jointly constrained biconvex programming and related problems: an overview. Comput. Math. Appl. 19, 53–62 (1990)

    Article  Google Scholar 

  2. Androulakis I.P., Maranas C.D., Floudas C.A.: αBB: a global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7, 337–363 (1995)

    Article  Google Scholar 

  3. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising hull and box consistency. In: International Conference on Logic Programming, pp. 230–244. http://www.citeseer.ist.psu.edu/benhamou99revising.html (1999)

  4. Benhamou, F., McAllister, D., Van Hentenryck, P.: CLP(intervals) revisited. In: Proceedings of International Symposium on Logic Programming, pp. 124–138. MIT Press (1994)

  5. Chabert, G., Jaulin, L.: Hull consistency under monotonicity. In: Principle and Practices of Constraint Programming—CP2009, pp. 188–195 (2009)

  6. Cruz, J., Barahona, P.: Constraint reasoning in deep biomedical models. J. Artif. Intell. Med. 34,77–88. http://www.ssdi.di.fct.unl.pt/~pb/papers/ludi_constraints.pdf (2005)

    Google Scholar 

  7. Domes, F.: GloptLab—a configurable framework for the rigorous global solution of quadratic constraint satisfaction problems. Optim. Methods Softw. 24, 727–747. http://www.mat.univie.ac.at/~dferi/publ/Gloptlab.pdf (2009)

  8. Domes, F., Neumaier, A.: A scaling algorithm for polynomial constraint satisfaction problems. J. Glob. Optim. 43, 327–345. http://www.mat.univie.ac.at/~dferi/publ/Scaling.pdf (2008)

    Google Scholar 

  9. Domes, F., Neumaier, A.: Constraint propagation on quadratic constraints. Constraints 15, 404–429. http://www.mat.univie.ac.at/~dferi/publ/Propag.pdf (2010)

    Google Scholar 

  10. Garloff, J., Jansson, C., Smith, A.: Lower bound functions for polynomials. J. Comput. Appl. Math. 157, 207–225. http://www.citeseer.ist.psu.edu/534450.html (2003)

    Google Scholar 

  11. Grandon, C., Daney, D., Papegay, Y.: Combining CP and interval methods for solving the direct kinematic of a parallel robot under uncertainties. IntCP 06 Workshop. ftp://ftp-sop.inria.fr/coprin/daney/articles/intcp06.pdf (2006)

  12. Hongthong, S., Kearfott, R.B.: Rigorous linear overestimators and underestimators. Technical report. http://www.interval.louisiana.edu/preprints/estimates_of_powers.pdf

  13. Jaulin, L.: Interval constraints propagation techniques for the simultaneous localization and map building of an underwater robot. http://www.mat.univie.ac.at/~neum/glopt/gicolag/talks/jaulin.pdf (2006)

  14. Jaulin, L., Kieffer, M., Braems, I., Walter, E.: Guaranteed nonlinear estimation using constraint propagation on sets. Int. J. Control 74, 1772–1782. https://www.ensieta.fr/e3i2/Jaulin/observer.pdf (1999)

  15. Keil, C.: Lurupa—rigorous error bounds in linear programming. In: Algebraic and Numerical Algorithms and Computer-assisted Proofs (2005)

  16. Kolev L.V.: Automatic computation of a linear interval enclosure. Reliab. Comput. 7(1), 17–28 (2001)

    Article  Google Scholar 

  17. Krippahl, L., Barahona, P.: PSICO: Solving protein structures with constraint programming and optimization. Constraints 7, 317–331. http://www.ssdi.di.fct.unl.pt/~pb/papers/ludi_constraints.pdf (2002)

    Google Scholar 

  18. Lebbah, Y.: iCOs—Interval Constraints Solver. http://www.ylebbah.googlepages.com/icos (2003)

  19. Lebbah, Y., Michel, C., Rueher, M.: A rigorous global filtering algorithm for quadratic constraints. Constraints, 10, 47–65. http://www.ylebbah.googlepages.com/research (2005)

  20. Lhomme O.: Consistency techniques for numeric csps. IJCAI 1, 232–238 (1993)

    Google Scholar 

  21. McCormick G.: Computability of global solutions to factorable non-convex programs part I convex underestimating problems. Math. Program. 10, 147–175 (1976)

    Article  Google Scholar 

  22. Merlet, J.-P.: Solving the forward kinematics of a Gough-type parallel manipulator with interval analysis. Int. J. Robotics Res. 23(3), 221–235. http://www.sop.inria.fr/coprin/equipe/merlet/Papers/IJRR2004.pdf (2004)

    Google Scholar 

  23. Motzkin, T.S. Beitrge zur Theorie der linearen Ungleichungen. PhD thesis, Basel, Jerusalem (1936)

  24. Neumaier, A.: Interval methods for systems of equations, vol. 37 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1990)

  25. Neumaier, A.: Complete search in continuous global optimization and constraint satisfaction. In: Iserles, A. (Ed.) Acta Numerica 2004 pp. 271–369. Cambridge University Press (2004)

  26. Neumaier, A., Shcherbina, O.: Safe bounds in linear and mixed-integer programming. Math. Program. 99, 283–296. http://www.mat.univie.ac.at/~neum/ms/mip.pdf (2004)

    Google Scholar 

  27. Rikun A.D.: A convex envelope formula for multilinear functions. J. Glob. Optim. 10, 425–437 (1997)

    Article  Google Scholar 

  28. Rump, S.M.: INTLAB—Interval Laboratory. http://www.ti3.tu-harburg.de/~rump/intlab/ (1998–2008)

  29. Sahinidis, N.V., Tawarmalani, M.: BARON 7.2.5: lobal optimization of mixed-integer nonlinear programs, User’s Manual. http://www.gams.com/dd/docs/solvers/baron.pdf (2005)

  30. Schichl, H., Markót, M.C., Neumaier, A., Vu, X.-H., Keil, C.: The COCONUT Environment. http://www.mat.univie.ac.at/coconut-environment. Software (2000–2010)

  31. Schichl H., Neumaier A.: Interval analysis on directed acyclic graphs for global optimization. J. Glob. Optim. 33(4), 541–562 (2005)

    Article  Google Scholar 

  32. Sherali, H., Adams, W.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer Academic Publ. (1999)

  33. Tawarmalani, M., Sahinidis, N.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99(3) (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferenc Domes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domes, F., Neumaier, A. Rigorous filtering using linear relaxations. J Glob Optim 53, 441–473 (2012). https://doi.org/10.1007/s10898-011-9722-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9722-1

Keywords

Navigation