Journal of Global Optimization

, Volume 50, Issue 3, pp 371–378 | Cite as

A new topological minimax theorem with application

  • Hoang TuyEmail author


A new topological minimax theorem is established for functions on \({C\times \mathbb R}\) where C is a topological space. Although this theorem includes as special cases most important recent results on this subject, its proof is surprisingly simple. An application to nonlinear optimization theory is considered.


Topological minimax theorem involving a real variable Zero duality gap for nonlinear optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borenshtein O.Yu., Shul’man V.S.: A minimax theorem. Math. Notes 50, 752–754 (1991)Google Scholar
  2. 2.
    König H.: A general minimax theorem based on connectedness. Arch. Math. 59, 55–64 (1992)CrossRefGoogle Scholar
  3. 3.
    Ricceri B.: Some topological minimax theorems via an alternative principle for multifunctions. Arch. Math. 60, 367–377 (1993)CrossRefGoogle Scholar
  4. 4.
    Ricceri B.: A further improvement of a minimax theorem of Borhenshtein and Shul’man. J. Nonlinear Convex Anal. 2, 279–283 (2001)Google Scholar
  5. 5.
    Ricceri B.: Well-posedness of constrained minimization problems via saddle-points. J. Glob. Optim. 40, 389–397 (2008)CrossRefGoogle Scholar
  6. 6.
    Ricceri B.: Recent advances in minimax theory and applications. In: Chinchuluun, A., Migdalas, A., Pardalos, P.M., Pitsoulis, L. (eds) Pareto Optimality, Game Theory and Equilibria, pp. 23–52. Springer, New York (2008)CrossRefGoogle Scholar
  7. 7.
    Ricceri B.: Minimax theorems for functions involving a real variable and applications. Fixed Point Theory 9(1), 275–291 (2008)Google Scholar
  8. 8.
    Saint Raymond J.: On a minimax theorem. Arch. Math. (Basel) 74, 432–437 (2000)Google Scholar
  9. 9.
    Strongin R.G., Sergeyev Y.D.: Global optimization with nonconvex constraints: sequential and parallel algorithms. Kluwer, Dordrecht (2000)Google Scholar
  10. 10.
    Tuy H.: On a general minimax theorem. Sov. Math. Dokl. 15, 1689–1693 (1974)Google Scholar
  11. 11.
    Tuy, H.: New advances in topological minimax theory. Preprint, Institute of Mathematics, Hanoi (2008) (submitted)Google Scholar
  12. 12.
    Tuy H.: Monotonic optimization: problems and Solution Approaches. SIAM J. Optim. 11, 464–494 (2000)CrossRefGoogle Scholar
  13. 13.
    Tuy H., Minoux M., Hoai Phuong N.T.: Discrete monotonic optimization with application to a discrete location problem. SIAM J. Optim. 17, 78–97 (2006)CrossRefGoogle Scholar
  14. 14.
    Tuy H.: \({{\mathcal D(C)}}\)-optimization and robust global optimization. J. Glob. Optim. 47, 485–501 (2010). doi: 10.1007/s10898-009-9475-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  1. 1.Institute of MathematicsHanoiVietnam

Personalised recommendations