Skip to main content

A partition-based global optimization algorithm


This paper is devoted to the study of partition-based deterministic algorithms for global optimization of Lipschitz-continuous functions without requiring knowledge of the Lipschitz constant. First we introduce a general scheme of a partition-based algorithm. Then, we focus on the selection strategy in such a way to exploit the information on the objective function. We propose two strategies. The first one is based on the knowledge of the global optimum value of the objective function. In this case the selection strategy is able to guarantee convergence of every infinite sequence of trial points to global minimum points. The second one does not require any a priori knowledge on the objective function and tries to exploit information on the objective function gathered during progress of the algorithm. In this case, from a theoretical point of view, we can guarantee the so-called every-where dense convergence of the algorithm.

This is a preview of subscription content, access via your institution.


  1. Breiman L., Cutler A.: Deterministic algorithm for global optimization. Math. Program. 58, 179–199 (1993)

    Article  Google Scholar 

  2. Dixon, L.C.W., Szegö, G.P.: Towards Global Optimization 2. North Holland (1975)

  3. Finkel D.E., Kelley C.T.: Additive scaling and the DIRECT algorithm. J. Glob. Optim. 36, 597–608 (2006)

    Article  Google Scholar 

  4. Floudas C.A., Pardalos P.M., Adjiman C.S., Esposito W.R., Gümüs Z., Harding S.T., Klepeis J.L., Meyer C.A., Schweiger C.A.: Handbook of Test Problems for Local and Global Optimization. Kluwer, Dordrecht (1999)

    Google Scholar 

  5. Gergel V.P.: A global optimization algorithm for multivariate function with Lipschitzian first derivatives. J. Glob. Optim. 10, 257–281 (1997)

    Article  Google Scholar 

  6. Gablonsky J.M., Kelley C.T.: A locally-biased form of the DIRECT algorithm. J. Glob. Optim. 21, 27–37 (2001)

    Article  Google Scholar 

  7. Hedar, A.:

  8. Horst R., Pardalos P.M., Thoai N.V.: Introduction to Global Optimization. Kluwer, Dordrecht (2000)

    Google Scholar 

  9. Horst R., Tuy H.: Global Optimization: Deterministic Approaches. Springer, Berlin (1990)

    Google Scholar 

  10. Jones D.R., Perttunen C.D., Stuckman B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)

    Article  Google Scholar 

  11. Jones D.R.: The DIRECT global optimization algorithm. In: Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization, pp. 431–440. Kluwer, Dordrecht (2001)

    Chapter  Google Scholar 

  12. Kvasov D.E., Sergeyev Y.D.: A univariate global search working with a set of Lipschitz constants for the first derivatives. Optim. Lett. 3, 303–318 (2009)

    Article  Google Scholar 

  13. Liuzzi, G., Lucidi, S., Piccialli, V.: A partition-based global optimization algorithm. Technical Report IASI (2009)

  14. Lucidi S., Piccioni M.: Random Tunneling by Means of Acceptance-Rejection Sampling for Global Optimization. J. Optim. Theory Appl. 62(2), 255–279 (1989)

    Article  Google Scholar 

  15. Molinaro A., Pizzuti C., Sergeyev Y.D.: Acceleration tools for diagonal information global optimization algorithms. Comput. Optim. Appl. 18, 5–26 (2001)

    Article  Google Scholar 

  16. Pintér J.D.: Global Optimization in Action, Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications. Nonconvex Optimization and Its Applications, Vol. 6. Kluwer, Dordrecht (1996)

    Google Scholar 

  17. Sergeyev Y.D.: On convergence of divide the best global optimization algorithms. Optimization 44, 303–325 (1998)

    Article  Google Scholar 

  18. Sergeyev Y.D.: Global one-dimensional optimization using smooth auxiliary functions. Math. Program. 81, 127–146 (1998)

    Google Scholar 

  19. Sergeyev Y.D., Kvasov D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16, 910–937 (2006)

    Article  Google Scholar 

  20. Strongin R.G., Sergeyev Y.D.: Global Optimization with Non-convex Constraints. Kluwer, Dordrecht (2000)

    Google Scholar 

  21. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the cec 2005 special session on real-parameter optimization. Technical Report, Nanyang Technological University, Singapore (2005)

  22. Törn A., Z̆ilinskas A.: Global Optimization. Springer, Berlin (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Stefano Lucidi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liuzzi, G., Lucidi, S. & Piccialli, V. A partition-based global optimization algorithm. J Glob Optim 48, 113–128 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Global optimization
  • Partition-based algorithm
  • DIRECT-type algorithm