Abstract
This paper is devoted to the study of partition-based deterministic algorithms for global optimization of Lipschitz-continuous functions without requiring knowledge of the Lipschitz constant. First we introduce a general scheme of a partition-based algorithm. Then, we focus on the selection strategy in such a way to exploit the information on the objective function. We propose two strategies. The first one is based on the knowledge of the global optimum value of the objective function. In this case the selection strategy is able to guarantee convergence of every infinite sequence of trial points to global minimum points. The second one does not require any a priori knowledge on the objective function and tries to exploit information on the objective function gathered during progress of the algorithm. In this case, from a theoretical point of view, we can guarantee the so-called every-where dense convergence of the algorithm.
This is a preview of subscription content, access via your institution.
References
Breiman L., Cutler A.: Deterministic algorithm for global optimization. Math. Program. 58, 179–199 (1993)
Dixon, L.C.W., Szegö, G.P.: Towards Global Optimization 2. North Holland (1975)
Finkel D.E., Kelley C.T.: Additive scaling and the DIRECT algorithm. J. Glob. Optim. 36, 597–608 (2006)
Floudas C.A., Pardalos P.M., Adjiman C.S., Esposito W.R., Gümüs Z., Harding S.T., Klepeis J.L., Meyer C.A., Schweiger C.A.: Handbook of Test Problems for Local and Global Optimization. Kluwer, Dordrecht (1999)
Gergel V.P.: A global optimization algorithm for multivariate function with Lipschitzian first derivatives. J. Glob. Optim. 10, 257–281 (1997)
Gablonsky J.M., Kelley C.T.: A locally-biased form of the DIRECT algorithm. J. Glob. Optim. 21, 27–37 (2001)
Hedar, A.: http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
Horst R., Pardalos P.M., Thoai N.V.: Introduction to Global Optimization. Kluwer, Dordrecht (2000)
Horst R., Tuy H.: Global Optimization: Deterministic Approaches. Springer, Berlin (1990)
Jones D.R., Perttunen C.D., Stuckman B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)
Jones D.R.: The DIRECT global optimization algorithm. In: Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization, pp. 431–440. Kluwer, Dordrecht (2001)
Kvasov D.E., Sergeyev Y.D.: A univariate global search working with a set of Lipschitz constants for the first derivatives. Optim. Lett. 3, 303–318 (2009)
Liuzzi, G., Lucidi, S., Piccialli, V.: A partition-based global optimization algorithm. Technical Report IASI (2009)
Lucidi S., Piccioni M.: Random Tunneling by Means of Acceptance-Rejection Sampling for Global Optimization. J. Optim. Theory Appl. 62(2), 255–279 (1989)
Molinaro A., Pizzuti C., Sergeyev Y.D.: Acceleration tools for diagonal information global optimization algorithms. Comput. Optim. Appl. 18, 5–26 (2001)
Pintér J.D.: Global Optimization in Action, Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications. Nonconvex Optimization and Its Applications, Vol. 6. Kluwer, Dordrecht (1996)
Sergeyev Y.D.: On convergence of divide the best global optimization algorithms. Optimization 44, 303–325 (1998)
Sergeyev Y.D.: Global one-dimensional optimization using smooth auxiliary functions. Math. Program. 81, 127–146 (1998)
Sergeyev Y.D., Kvasov D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16, 910–937 (2006)
Strongin R.G., Sergeyev Y.D.: Global Optimization with Non-convex Constraints. Kluwer, Dordrecht (2000)
Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the cec 2005 special session on real-parameter optimization. Technical Report, Nanyang Technological University, Singapore (2005)
Törn A., Z̆ilinskas A.: Global Optimization. Springer, Berlin (1989)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liuzzi, G., Lucidi, S. & Piccialli, V. A partition-based global optimization algorithm. J Glob Optim 48, 113–128 (2010). https://doi.org/10.1007/s10898-009-9515-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-009-9515-y
Keywords
- Global optimization
- Partition-based algorithm
- DIRECT-type algorithm