Skip to main content
Log in

An improved lower bound and approximation algorithm for binary constrained quadratic programming problem

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper presents an improved lower bound and an approximation algorithm based on spectral decomposition for the binary constrained quadratic programming problem. To decompose spectrally the quadratic matrix in the objective function, we construct a low rank problem that provides a lower bound. Then an approximation algorithm for the binary quadratic programming problem together with a worst case performance analysis for the algorithm is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allemand K., Fukuda K., Liebling T.M., Steiner E.: A polynomial case of unconstrained zero-one quadratic optimization. Math. Program. Ser. A 91, 49–52 (2001)

    Google Scholar 

  2. Avis D., Fukuda K.: Reverse search for enumeration. Discrete Appl. Math. 65, 21–46 (1996)

    Article  Google Scholar 

  3. Edelsburunner H.: Algorithms in Combinatorial Geometry. Springer, London (1987)

    Google Scholar 

  4. Fang S.C., Gao D.Y., Sheu R.-L., Wu S.Y.: Canonical dual approach for solving 0–1 quadratic programming problems. J. Ind. Manage. Optim. 4, 125–142 (2007)

    Google Scholar 

  5. Ferrez J.A., Fukuda K., Liebling T.M.: Solving the fixed rank convex quadratic maximization in binary variables by a parallel zonotope construction algorithm. EJOR. 166, 35–50 (2005)

    Article  Google Scholar 

  6. Gao D.Y.: Solutions and optimality to box constrained nonconvex minimization problems. J. Ind. Manage. Optim. 3, 293–304 (2007)

    Google Scholar 

  7. Gao, D.Y.: Canonical duality theory: unified understanding and generalized solution for global optimization problems. Comput. Chem. Eng. (2009) (in press)

  8. Gao D.Y., Strang G.: Geometric nonlinearity: potential energy, complementary energy, and the gap function. Quart. Appl. Math. 47, 487–504 (1989)

    Google Scholar 

  9. Garey M.R., Johnson D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, San Francisco (1979)

    Google Scholar 

  10. Goemans M.X., Williamson D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)

    Article  Google Scholar 

  11. Gungah S.K., Halikias G.D., Jaimoukha I.M.: Maximally robust controllers for multivariable systems. SIAM J. Control Optim. 38, 1805–1829 (2000)

    Article  Google Scholar 

  12. Gungah, S.K., Halikias, G.D., Jaimoukha, I.M.: Maximally robust controllers for multivariable systems. In: Proceedings of the 39th IEEE Conference on Decision & Control, pp. 595–600 (2000)

  13. Gungah, S.K., Malik, U., Jaimoukha, I.M., Halikias, G.D.: A new upper bound for the real structured singular value. In: Proceedings of the 40th IEEE Conference on Decision & Control, pp. 247–248, Florida (2001)

  14. Gungah, S.K.: Maximally robust controllers for a class of unstructured uncertainty. PhD thesis, Imperial College, University of London (1999)

  15. Halikias G.D., Jaimoukha I.M., Malik U., Gungah S.K.: New bounds on the unconstrained quadratic integer problem. J. Glob. Optim. 39, 543–554 (2007)

    Article  Google Scholar 

  16. Jaimoukha I.M., Halikias G.D., Malik U., Gungah S.K.: On the gap between the complex structured singular value and its convex upper bound. SIAM J. Control Optim. 45, 1251–1278 (2006)

    Article  Google Scholar 

  17. Lemarechal C., Oustry F.: SDP relaxations in combinatorial optimization from a Lagrangian point of view. In: Hadijsavvas, N., Paradalos, P.M. (eds) Advances in Convex Analysis and Global Optimization, pp. 119–134. Kluwer, London (2001)

    Google Scholar 

  18. Malik U., Jaimoukha I.M., Halikias G.D., Gungah S.K.: On the gap between the quadratic integer programming problem and its semidefinite relaxation. Math. Prog. Ser. A 107, 505–515 (2006)

    Article  Google Scholar 

  19. Pardalos P.M., Rodgers G.P.: Computational aspects of a branch and bound algorithm for quadratic zero-one programming. Computing 45, 131–144 (1990)

    Article  Google Scholar 

  20. Wang Z., Fang S.C., Gao D.Y., Xing W.: Global extremal conditions for multi-integer quadratic programming. J. Ind. Manage. Optim. 4, 213–225 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxun Xing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, C., Wang, Z. & Xing, W. An improved lower bound and approximation algorithm for binary constrained quadratic programming problem. J Glob Optim 48, 497–508 (2010). https://doi.org/10.1007/s10898-009-9504-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-009-9504-1

Keywords

Navigation