Advertisement

Journal of Global Optimization

, Volume 47, Issue 4, pp 639–660 | Cite as

Upper semicontinuity result for the solution mapping of a mixed parametric generalized vector quasiequilibrium problem with moving cones

  • Le Anh Tuan
  • Gue Myung LeeEmail author
  • Pham Huu Sach
Article

Abstract

In this paper, we give sufficient conditions for the upper semicontinuity property of the solution mapping of a parametric generalized vector quasiequilibrium problem with mixed relations and moving cones. The main result is proven under the assumption that moving cones have local openness/local closedness properties and set-valued maps are cone-semicontinuous in a sense weaker than the usual sense of semicontinuity. The nonemptiness and the compactness of the solution set are also investigated.

Keywords

Equilibrium problem Moving cone Openness property Closedness property Diagonal quasiconvexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    References on Vector variational inequalities. J. Glob. Optim. 32, 529–536 (2005)Google Scholar
  2. 2.
    Anh L.Q., Khanh P.Q.: On the Hölder continuity of solutions to parametric multivalued vector equilibrium problems. J. Math. Anal. Appl. 321, 308–315 (2006)CrossRefGoogle Scholar
  3. 3.
    Anh L.Q., Khanh P.Q.: Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems. J. Math. Anal. Appl. 294, 699–711 (2004)CrossRefGoogle Scholar
  4. 4.
    Anh L.Q., Khanh P.Q.: On the stability of the solution sets of general multivalued vector quasiequilibrium problems. J. Optim. Theory Appl. 135, 271–284 (2007)CrossRefGoogle Scholar
  5. 5.
    Anh L.Q., Khanh P.Q.: Semicontinuity of the solutions sets to parametric quasivariational inclusions with applications to traffic networks. I. Upper semicontinuities. Set-Valued Anal 16, 267–279 (2008)CrossRefGoogle Scholar
  6. 6.
    Anh L.Q., Khanh P.Q.: Semicontinuity of the solutions sets to parametric quasivariational inclusions with applications to traffic networks. II. Lower semicontinuities Applications. Set-Valued Anal. 16, 943–960 (2008)CrossRefGoogle Scholar
  7. 7.
    Aubin J.P.: Mathematical Methods of Game and Economic Theory. North-Holland, Amsterdam (1979)Google Scholar
  8. 8.
    Cheng Y.H., Zhu D.L.: Global stability results for the weak vector variational inequality. J. Glob. Optim. 32, 543–550 (2005)CrossRefGoogle Scholar
  9. 9.
    Dafermos S.: Sensitivity analysis in variational inequalities. Math. Oper. Res. 13, 421–434 (1988)CrossRefGoogle Scholar
  10. 10.
    Ding X.P., Luo C.L.: On parametric generalized quasivariational inequalities. J. Optim. Theory Appl. 100, 195–205 (1999)CrossRefGoogle Scholar
  11. 11.
    Domokos A.: Solution sensitivity of variational inequalities. J. Math. Anal. Appl. 230, 382–389 (1999)CrossRefGoogle Scholar
  12. 12.
    Fu J.Y.: Symmetric vector quasi-equilibrium problems. J. Math. Anal. Appl. 285, 708–713 (2003)CrossRefGoogle Scholar
  13. 13.
    Gong X.H.: Symmetric strong vector quasi-equilibrium problems. Math. Methods Oper. Res. 65, 305–314 (2007)CrossRefGoogle Scholar
  14. 14.
    Isac G., Yuan G.X-Z.: The existence of essentially connected components of solutions for variational inequalities. In: Giannessi, F. (eds) Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, pp. 253–265. Kluwer, Dordrecht (2000)Google Scholar
  15. 15.
    Kassay G., Kolumban J.: Variational inequalities given by semi-pseudo-monotone mappings. Nonlinear Anal. 5, 35–50 (2000)Google Scholar
  16. 16.
    Khanh P.Q., Luu L.M.: Upper semicontinuity of the solution set to parametric vector quasivariational inequalities. J. Glob. Optim. 32, 569–580 (2005)CrossRefGoogle Scholar
  17. 17.
    Khanh P.Q., Luu L.M.: Lower semicontinuity and upper semicontinuity of the solution sets and approximate solution sets of parametric multivalued quasivariational inequalities. J. Optim. Theory Appl. 133, 329–339 (2007)CrossRefGoogle Scholar
  18. 18.
    Kimura K., Yao J.C.: Sensitivity analysis of solution mappings of parametric vector quasi-equilibrium problems. J. Glob. Optim. 41, 187–202 (2008)CrossRefGoogle Scholar
  19. 19.
    Kimura K., Yao J.C.: Semicontinuity of solution mappings of parametric generalized vector equilibrium problems. J. Optim. Theory Appl. 138, 429–443 (2008)CrossRefGoogle Scholar
  20. 20.
    Levy A.B.: Sensitivity of solutions to variational inequalities on Banach spaces. SIAM J. Control Optim. 38, 50–60 (1999)CrossRefGoogle Scholar
  21. 21.
    Li S.L., Teo K.L., Yang X.Q.: Generalized vector quasi-equilibrium problems. Math. Methods Oper. Res. 61, 385–397 (2005)CrossRefGoogle Scholar
  22. 22.
    Li S.L., Teo K.L., Yang X.Q., Wu S.Y.: Gap functions and existence of solutions to generalized vector quasi-equilibrium problems. J. Glob. Optim. 34, 427–440 (2006)CrossRefGoogle Scholar
  23. 23.
    Lin L.J., Tan N.X.: On quasivariational inclusion problems of type I and related problems. J. Glob. Optim. 39, 393–407 (2007)CrossRefGoogle Scholar
  24. 24.
    Luc D.T., Penot J.P.: Convergence of asymptotic directions. Trans. Am. Math. Soc. 353, 4095–4121 (2001)CrossRefGoogle Scholar
  25. 25.
    Massey W.S.: Singular Homology Theory. Springer, New York (1970)Google Scholar
  26. 26.
    Muu L.D.: Stability property of a class of variational inequalities, Mathematische Operationsforschung und Statistik. Ser. Optim. 15, 347–351 (1984)CrossRefGoogle Scholar
  27. 27.
    Noor M.A.: Generalized quasivariational inequalities and implicit Wiener–Hopf equations. Optimization 45, 197–222 (1999)CrossRefGoogle Scholar
  28. 28.
    Robinson S.M.: Sensitivity analysis of variational inequalities by normal-map techniques. In: Giannessi, F., Maugeri, A. (eds) Variational Inequalities and Network Equilibrium Problem, Plenum, New York (1995)Google Scholar
  29. 29.
    Sach P.H.: On a class of generalized vector quasiequilibrium problems with set-valued maps. J. Optim. Theory Appl. 139, 337–350 (2008)CrossRefGoogle Scholar
  30. 30.
    Sach, P.H., Lin, L.J., Tuan, L.A.: Generalized Vector Quasivariational Inclusion Problems with Moving Cones. J. Optim. Theory Appl. (2010, accepted)Google Scholar
  31. 31.
    Sach P.H., Tuan L.A.: Existence results for set-valued vector quasi-equilibrium problems. J. Optim. Theory Appl. 133, 229–240 (2007)CrossRefGoogle Scholar
  32. 32.
    Sach P.H., Tuan L.A.: Generalizations of vector quasivariational inclusion problems with set-valued maps. J. Glob. Optim. 43, 23–45 (2009)CrossRefGoogle Scholar
  33. 33.
    Sach, P.H., Tuan, L.A.: Upper semicontinuity of solution sets of mixed parametric generalized vector quasiequilibrium problems with moving cones (2009, submitted)Google Scholar
  34. 34.
    Sach P.H., Tuan L.A., Lee G.M.: Sensitivity results for a general class of generalized vector quasi-equilibrium problems with set-valued maps. Nonlinear Anal. Ser A Theory Methods Appl. 71, 571–586 (2009)CrossRefGoogle Scholar
  35. 35.
    Tan N.X.: On the existence of solutions of quasivariational inclusion problem. J. Optim. Theory Appl. 123, 619–638 (2004)CrossRefGoogle Scholar
  36. 36.
    Tuan L.A., Sach P.H.: Existence theorems for some generalized quasivariational inclusion problems. Vietnam J. Math. 33, 111–122 (2005)Google Scholar
  37. 37.
    Wardrop, J.: Some theoretical aspects of road traffic research. In: Proceedings of the Institute of Civil Engineers, Part II, vol. I, pp. 325–378 (1952)Google Scholar
  38. 38.
    Yang X.Q., Goh C.-J.: Vector variational inequalities, vector equilibrium flow and vector optimization. In: Giannessi, F. (eds) Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, pp. 447–465. Kluwer, Dordrecht (2000)Google Scholar
  39. 39.
    Yang X.Q., Goh C.-J.: On vector variational inequalities: applications to vector equilibria. J. Optim. Theory Appl. 95, 431–443 (1997)CrossRefGoogle Scholar
  40. 40.
    Yen N.D.: Lipschitz continuity of solutions of variational inequalities with a parametric polyhedral constraint. Math. Oper. Res. 20, 695–708 (1995)CrossRefGoogle Scholar
  41. 41.
    Yen N.D.: Hölder continuity of solutions to parametric variational inequalities. Appl. Math. Optim. 31, 245–255 (1995)CrossRefGoogle Scholar
  42. 42.
    Yen N.D., Lee G.M.: Solution sensitivity of a class of variational inequalities. J. Math. Anal. Appl. 215, 48–55 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.Ninh Thuan College of PedagogyNinh ThuanVietnam
  2. 2.Division of Mathematical SciencesPukyong National UniversityPusanKorea
  3. 3.Hanoi Institute of MathematicsHanoiVietnam

Personalised recommendations