Skip to main content

A new asymmetric inclusion region for minimum weight triangulation

Abstract

As a global optimization problem, planar minimum weight triangulation problem has attracted extensive research attention. In this paper, a new asymmetric graph called one-sided β-skeleton is introduced. We show that the one-sided circle-disconnected \({(\sqrt{2}\beta)}\) -skeleton is a subgraph of a minimum weight triangulation. An algorithm for identifying subgraph of minimum weight triangulation using the one-sided \({(\sqrt{2}\beta)}\) -skeleton is proposed and it runs in \({O(n^{4/3+\epsilon}+\min\{\kappa \log n, n^2\log n\})}\) time, where κ is the number of intersected segmented between the complete graph and the greedy triangulation of the point set.

This is a preview of subscription content, access via your institution.

References

  1. Agarwal P.K., Sharir M.: Applications of a new space-partitioning technique. Discret. Comput. Geom. 9, 11–38 (1993)

    Article  Google Scholar 

  2. Aichholzer O., Aurenhammer F., Hainz R.: New results on mwt subgraphs. Inf. Process. Lett. 69(5), 215–219 (1999)

    Article  Google Scholar 

  3. Belleville, P., Keil, M., Mcallister, M., Snoeyink, J.: On computing edges that are in all minimum weight triangulations. In: Proceedings of 12th Annual ACM Symposium on Computational Geometry, pp. V7–V8 (1996)

  4. Bose P., Devroye L., Evans W.: Diamonds are not a minimum weight triangulation’s best friend. Int. J. Comput. Geom. 12(6), 445–453 (2002)

    Article  Google Scholar 

  5. Chazelle B.: Cutting hyperplanes for divide-and-conquer. Discret. Comput. Geom. 9, 145–158 (1993)

    Article  Google Scholar 

  6. Cheng, S.-W., Golin, M.J., Tang, J.C.F.: Expected-case analysis of β-skeleton with application to the construction of minimum-weight triangulations. In: Proceedings of Canadian Conference on Computational Geometry (CCCG), pp. 279–283 (1995)

  7. Cheng S.W., Xu Y.F.: On β-skeleton as a subgraph of a minimum weight triangulation. Theor. Comput. Sci. 262(1–2), 459–471 (2001)

    Article  Google Scholar 

  8. Dickerson M.T., Keil J.M., Montague M.H.: A large subgraph of the minimum weight triangulation. Discret. Comput. Geom. 18, 289–304 (1997)

    Article  Google Scholar 

  9. Hoffmann M., Okamoto Y.: The minimum weight triangulation problem with few inner points. Comput. Geom. Theory Appl. 34, 149–158 (2006)

    Google Scholar 

  10. Keil M.: Computing a subgraph of the minimum weight triangulation. Comput. Geom. Theory Appl. 4, 13–26 (1994)

    Google Scholar 

  11. Kirkpatrick D.G., Radke J.D.: A framework for computational morphology. In: Toussaint, G.T. (eds) Computational Geometry, pp. 217–248. Elsevier, Amsterdam (1985)

    Google Scholar 

  12. Levcopoulos C., Krznaric D.: Quasi-greedy triangulations approximating the minimum weight triangulation. J. Algorithms 27(2), 303–338 (1998)

    Article  Google Scholar 

  13. Levcopoulos C., Krznaric D.: The greedy triangulation can be computed from the delaunay triangulation in linear time. Comput. Geom. Theory Appl. 14(4), 197–220 (1999)

    Google Scholar 

  14. Mulzer W., Rote G.: Minimum weight triangulation is np-hard. J. Assoc. Comput. Mach. (JACM) 55(2), 1–29 (2008)

    Article  Google Scholar 

  15. Remy, J., Steger, A.: A quasi-polynomial time approximation scheme for minimum weight triangulation. In: Proceedings of the 38th ACM Symposium on Theory of Computing (STOC), pp. 316–325 (2006)

  16. Wang C.A., Chin F., Xu Y.F.: A new subgraph of minimum weight triangulations. J. Comb. Optim. 1(2), 115–127 (1997)

    Article  Google Scholar 

  17. Wang C.A., Yang B.: A lower bound for beta-skeleton belonging to minimum weight triangulations. Comput. Geom. Theory Appl. 19(1), 35–46 (2001)

    Google Scholar 

  18. Yang, B.T., Xu, Y.F., You, Z.Y.: A chain decomposition algorithm for the proof of a property on minimum weight triangulations. In: Proceedings of the 5th International Symposium on Algorithms and Computation (ISAAC), Lecture Notes in Computer Science, vol. 834, pp. 423–427. Springer-Verlag, Berlin (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyan Hu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hu, S. A new asymmetric inclusion region for minimum weight triangulation. J Glob Optim 46, 63–73 (2010). https://doi.org/10.1007/s10898-009-9409-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-009-9409-z

Keywords

  • Minimum weight triangulation
  • Inclusion region
  • One-sided β-skeleton