Journal of Global Optimization

, Volume 43, Issue 2–3, pp 471–484 | Cite as

Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming

Article

Abstract

We consider relaxations for nonconvex quadratically constrained quadratic programming (QCQP) based on semidefinite programming (SDP) and the reformulation-linearization technique (RLT). From a theoretical standpoint we show that the addition of a semidefiniteness condition removes a substantial portion of the feasible region corresponding to product terms in the RLT relaxation. On test problems we show that the use of SDP and RLT constraints together can produce bounds that are substantially better than either technique used alone. For highly symmetric problems we also consider the effect of symmetry-breaking based on tightened bounds on variables and/or order constraints.

Keywords

Semidefinite programming Reformulation-linearization technique Quadratically constrained quadratic programming 

AMS Subject Classifications

90C26 90C22 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anstreicher, K.M., Burer, S.: Computable representations for convex hulls of low-dimensional quadratic forms. Working paper, Deptartment of Management Sciences, University of Iowa (2007) http://www.optimization-online.org/DB_HTML/2007/02/1586.html
  2. 2.
    Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Prog. (to appear)Google Scholar
  3. 3.
    Burer S., Vandenbussche D.: A finite branch–and–bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Prog. 113, 259–282 (2008)CrossRefGoogle Scholar
  4. 4.
    de Angelis P.L., Pardalos P.M., Toraldo G. : Quadratic programming with box constraints. In: Bomze, I.M. et al. (eds) Developments in Global Optimization, pp. 73–95. Kluwer, Dordrecht (1997)Google Scholar
  5. 5.
    Kim S., Kojima M.: Second order cone programming relaxation of nonconvex quadratic optimization problems. Optim. Methods Softw. 15, 201–204 (2001)CrossRefGoogle Scholar
  6. 6.
    Markót M.C., Csendes T.: A new verified optimization technique for the “packing circles in a unit square” problems. SIAM J. Optim. 16, 193–219 (2005)CrossRefGoogle Scholar
  7. 7.
    Sahinidis N.V.: BARON: a general purpose global optimization software package. J. Glob. Optim. 8, 201–205 (1996)CrossRefGoogle Scholar
  8. 8.
    Sherali H.D., Adams W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer, Dordrecht (1998)Google Scholar
  9. 9.
    Sherali H.D., Fraticelli B.M.P.: Enhancing RLT relaxations via a new class of semidefinite cuts. J. Glob. Optim. 22, 233–261 (2002)CrossRefGoogle Scholar
  10. 10.
    Sherali H.D., Tuncbilek C.H.: A reformulation-convexification approach for solving nonconvex quadratic programming problems. J. Glob. Optim. 7, 1–31 (1995)CrossRefGoogle Scholar
  11. 11.
    So A.M.-C., Ye Y.: Theory of semidefinite programming for sensor network localization. Math. Prog. 109, 367–384 (2007)CrossRefGoogle Scholar
  12. 12.
    Sturm J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12, 625–653 (1999)CrossRefGoogle Scholar
  13. 13.
    Szabó P.G., Markót M.C., Csendes T.: Global optimization in geometry—circle packing into the square. In: Audet, C., Hansen, P., Savard, G. (eds) Essays and Surveys in Global Optimization, pp. 233–266. Kluwer, Dordrecht (2005)CrossRefGoogle Scholar
  14. 14.
    Vandenberghe L., Boyd S.: Semidefinite programming. SIAM Rev. 38, 49–95 (1996)CrossRefGoogle Scholar
  15. 15.
    Vandenbussche D., Nemhauser G.: A branch-and-cut algorithm for nonconvex quadratic programming with box constraints. Math. Prog. 102, 559–575 (2005)CrossRefGoogle Scholar
  16. 16.
    Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.): Handbook of Semidefinite Programming. Kluwer, Dordrecht (2000)Google Scholar
  17. 17.
    Ye Y.: Approximating quadratic programming with bound and quadratic constraints. Math. Prog. 84, 219–226 (1999)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Department of Management Sciences, Tippie College of BusinessUniversity of IowaIowa CityUSA

Personalised recommendations