Skip to main content
Log in

A hybrid multiagent approach for global trajectory optimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper we consider a global optimization method for space trajectory design problems. The method, which actually aims at finding not only the global minimizer but a whole set of low-lying local minimizers (corresponding to a set of different design options), is based on a domain decomposition technique where each subdomain is evaluated through a procedure based on the evolution of a population of agents. The method is applied to two space trajectory design problems and compared with existing deterministic and stochastic global optimization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics, revised edition (Aiaa Education Series). AIAA (American Institute of Aeronautics & Ast) revised edition (1999). ISBN-13: 978-1563473425

  2. Dachwald, B.: Optimization of interplanetary solar sailcraft trajectories using evolutionary neurocontrol. J. Guid. Dyn. January/ February (2004)

  3. Dam E.R., van Husslage B.G.M., den Hertog D., Melissen J.B.M.: Maximin Latin hypercube designs in two dimensions. Oper. Res. 55, 158–169 (2007)

    Article  Google Scholar 

  4. Chipperfield, A.J., Fleming, P.J., Pohlheim, H., Fonseca, C.M.: Genetic Algorithm Toolbox User’s Guide, ACSE Research Report No. 512, University of Sheffield (1994)

  5. De Pascale P., Vasile M.: Preliminary design of low-thrust multiple gravity assist trajectories. J. Spacecr. Rockets 43(5), 1065–1076 (2006)

    Article  Google Scholar 

  6. Di Lizia, P., Radice, G.: Advanced global optimisation tools for mission analysis and design. European Space Agency, the Advanced Concepts Team, Ariadna Final Report 03-4101b (2004)

  7. Elbeltagi E., Hegazy T., Grierson D.: Comparison among five evolutionary-based optimization algorithms. Adv. Eng. Informatics 19, 43–53 (2005)

    Article  Google Scholar 

  8. Gage P.J., Braun R.D., Kroo I.M.: Interplanetary trajectory optimisation using a genetic algorithm. J. Astronaut. Sci. 43(1), 59–75 (1995)

    Google Scholar 

  9. Gurfil P., Kasdin N.J.: Niching genetic algorithms-based characterization of geocentric orbits in the 3D elliptic restricted three-body problem. Comput. Methods Appl. Mech. Eng. 191(49–50), 5673–5696 (2002)

    Google Scholar 

  10. Hartmann J.W., Coverstone-Carrol V.L., Williams S.N.: Optimal interplanetary spacecraft trajectories via pareto genetic algorithm. J. Astronaut. Sci. 46(3), 267–282 (1998)

    Google Scholar 

  11. Horst R., Tuy H.: Global Optimization: Deterministic Approaches, 3rd edn. Springer Verlag, (1996)

    Google Scholar 

  12. Huyer W., Neumaier A.: Global optimization by multilevel coordinate search. J. Glob. Optim. 14, 331–355 (1999)

    Article  Google Scholar 

  13. Jones D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21, 345–383 (2001)

    Article  Google Scholar 

  14. Labunsky, A.V., Papkov, O.V., Sukhanov, K.G.: Multiple Gravity Assist Interplanetary Trajectories. ESI Book Series (1998)

  15. Myatt, D.R., Becerra, V.M., Nasuto, S.J., Bishop, J.M.: Advanced Global Optimization Tools for Mission Analysis and Design. Final Rept. ESA Ariadna ITT AO4532/18138/04/NL/MV,Call03/4101 (2004)

  16. Perttunen C.D., Stuckman B.E.: Lipschitzian optimization without the Lipschitz constant. JOTA 79(1), 157–181 (1993)

    Article  Google Scholar 

  17. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization, 1st edn. Springer (2005). ISBN-13: 978-3540209508

  18. Rauwolf G., Coverstone-Carroll V.: Near-optimal low-thrust orbit transfers generated by a genetic algorithm. J. Spacecr. Rockets 33(6), 859–862 (1996)

    Article  Google Scholar 

  19. Rogata, P., Di Sotto, E., Graziano, M., Graziani, F.: Guess Value for Interplanetary Transfer Design Through Genetic Algorithms. American Astronautical Society, AAS Paper 03-140 (2003)

  20. Stephens C.P., Baritompa W.: Global optimization requires global information. J. Optm. Theory Appl. 96, 575–588 (1998)

    Article  Google Scholar 

  21. Storn R., Price K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  Google Scholar 

  22. Torn A., Zilinskas A.: Global Optimization. Springer, Berlin (1987)

    Google Scholar 

  23. Vasile, M.: Combining evolution programs and gradient methods for WSB transfer optimisation. In: Operational Research in Space & Air, vol. 79. Book Series in Applied Optimization Kluwer Academy Press (2003). ISBN 1-4020-1218-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Vasile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasile, M., Locatelli, M. A hybrid multiagent approach for global trajectory optimization. J Glob Optim 44, 461–479 (2009). https://doi.org/10.1007/s10898-008-9329-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-008-9329-3

Keywords

Navigation